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Abstract 

 
In North Louisiana, the Upper Jurassic Haynesville shale has a basinward southwest dip and is located at depths ranging from 10,500 ft in the 
northeast to 14,000 feet in the southwest with local minimums on the Sabine and Monroe Uplifts. Formation thickness ranges from 100 to 400 
feet. The shale's pore pressure and temperature history varies across the basin due to local structural highs, lateral changes in basal heat flow, 
and updip migration of fluid. Using well data, two-dimensional models across the North Louisiana Salt Basin were created to estimate 
temperature, pore pressure, and fluid flow versus time. Disequilibrium compaction from rapid sedimentation in the low permeability (nDarcy) 
Haynesville Shale has resulted in significant overpressures ranging from about 7,000 psi to 12,000 psi. Hydrocarbon generation resulted in a 
maximum pore pressure increase of more than 500 psi at 88 Ma. However, models created with and without hydrocarbon generation produced 
nearly identical results for present day pore pressure indicating that disequilibrium compaction is the most significant mechanism in generating 
overpressure. Fluid migration updip to the Sabine Uplift within the Haynesville Shale and underlying Smackover Limestone has resulted in 
abnormally high fluid pressures on the Sabine Uplift. Model results including lateral pressure transfer are consistent with present-day pore 
pressures from well test information. While model results do did predict pore pressures in excess of fracture pressures, computed pore 
pressures are closest to fracture pressures on the Sabine Uplift following uplift and erosion in the mid-Cretaceous. 
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Data and Methods



Data and Methods
Layer Lithology

Tertiary Shale (typical) 75%
Sandstone (typical) 25%

Wilcox         Shale (typical) 75%
Sandstone (typical) 25%

Midway         Shale (typical) 75%
Sandstone (typical) 25%

Navarro        Limestone (chalk, typical) 60%
Sandstone (typical) 25%
Shale (typical) 15%

Austin         Limestone (chalk, typical)
Eagle Ford, Wash/Fred 
undifferentiated

Shale (typical) 40%
Sandstone (typical) 30%
Limestone (chalk, typical) 30%

Glen Rose      Shale (typical) 40%
Sandstone (typical) 30%
Limestone (chalk, typical) 30%

Mooringsport   Limestone (shaly)
Ferry Lake     Shale (typical)
Rodessa        Limestone (shaly)
Bexar          Shale (typical)
James          Limestone (shaly)
Pine Island    Shale (typical)
Sligo          Limestone (shaly)
Hosston        Shale (sandy) default κ lowered
Cotton Valley  Shale (sandy) default κ lowered 
Bossier        Shale (sandy) default κ lowered 
Haynesville    Limestone (chalk, typical) 70%

Shale (typical) 30%
Smackover      Limestone (micrite)
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Boundary Conditions:

Paleowater Depths – Shallow
Surface Temperature – Climate and 

Plate Motions
Heat Flow –  = 1.25 to 2
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Prior Results

Transformation: 130-100 Ma
Immature->Oil->Wet to Dry Gas
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1D Results: Pore Pressure



1 Foster

C1 Tremont

2D Results: Pore Pressure
Distance, 1000 ft
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2D Results: Pore Pressure
Distance, 1000 ft
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2D Results: Pore Pressure
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2D Results: Pore Pressure vs Time
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2D Results: mid-Cretaceous
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2D Results: mid-Cretaceous
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Permeability & Water Flow 
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2D Results: mid-Cretaceous

Pore Pressure and Oil/Gas Flow 



2D Results:– 88 Ma

Pore Pressure Generation 
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2D Results: 86 Ma 

Pore Pressure Dissipation
Uplift and Erosion 
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Sensitivity Analysis
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CONCLUSIONS

• Pore pressure and temperature history varies due to local 
structural highs, lateral changes in basal heat flow, and updip
migration of fluid

• Disequilibrium compaction from rapid sedimentation in the 
low permeability (nD) Haynesville Shale has resulted in 
overpressures (7000 psi to 12000 psi)

• Hydrocarbon generation resulted in a maximum pore 
pressure increase of more than 500 psi at 88 Ma

• Disequilibrium compaction is the most significant mechanism 
in generating overpressure



CONCLUSIONS

• Updip fluid migration within the Haynesville Shale and 
underlying Smackover Limestone has resulted in higher fluid 
pressures on the Sabine Uplift

• Model results including lateral pressure transfer are 
consistent with present-day pore pressures from well test 
information

• Computed pore pressures are closest to fracture pressures on 
the Sabine Uplift following uplift and erosion in the mid-
Cretaceous.  


