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Abstract 

 

Determination of Petrophysical Rock Types (PRTs) in carbonates is an industry recognized best practice for reservoir characterization. 

However, current methods fail to capture factors such as diagenetic modification, multimodal pore throat distributions, fractures, and 

integration of dynamic data. This article discusses the inclusion of pore throat distributions in the pore typing step which is an integral element 

of the PRT workflow developed in Chevron, accounting for different data scenarios depending on availability of core, MICP and logging data.  

 

Carbonate petrophysical heterogeneity is generally the result of complex and multi-modal pore systems, including fractures. Carbonate pore 

systems in subsurface reservoirs that have seen even mild diagenetic overprint can rarely be decomposed into contributions from end-member 

pore types based on syndepositional texture. Conventional rock typing methods use petrographic observations, including image analysis to 

determine pore types qualitatively or quantitatively in an attempt to relate the pore system, at least in part, to flow and textural pore types. 

However, such techniques more than often do not resolve the complexity and multi-modality of the pore system and result in a 

misrepresentation of dynamic properties as documented by examples.  

 

Identification and prediction of pore types in the well bore from core and logs and their spatial prediction is therefore essential for a reliable 

rock typing in carbonates. Appropriate pore type identification comes from mercury porosimetry (MICP) interpretation. MICP is providing 

information on pore throat distributions controlling flow in reservoir. MICP derived pore types have to be combined with larger scale 

observations, such as vugs and fractures. Grouping pore throat modes from capillary pressure curves and mapping those on selected and 

representative porosity-permeability plug data provides a reliable way to predict pore type groups in multimodal systems and include the full 

scale of porosity from nanopores to macropores. MICP derived pore types have to be combined with larger scale observations, such as vugs 

and fractures, using specialty logs (e.g., NMR, FM) to provide this information.  

 

The integration of MICP data in the pore typing step in carbonate rock typing optimizes the link between the different scales of (dynamic and 

static) observations but at the same time challenges the geologist to capture the spatial trends and relationships between resulting PRTs.  
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Pore Types
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Main control of the flow in Carbonates

Linked to petrophysical models for permeability 
and water saturation 

Essential in Dual Porosity simulation

Critical component of Petrophysical Rock Typing
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Various scale pore systems: Carbonate 
multiscale images

Courtesy of Kejian Wu

Pore Size Distribution
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Pore size vs. pore throats
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Modified after Wardlaw (1976)

For crystalline dolomite fabrics 
higher ratio linked to higher 
retention and lower recovery

Mercury retention is 
higher for greater pore 

to throat size ratios
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Dual Porosity Classification for Carbonates
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Porosity Classification Systems – Overview

Classic pore type classification systems mostly observational

Archie (1952) – textural/petrophysical with 12 pore types

Choquette and Pray (1970) – definitions of pore types  
genetic/depositional with 15 pore types

Lucia (1983, 1995, 1999) – rock fabric/petrophysical with 18 
pore types

Lønøy (2006) – modified Choquette Pray pore size with 20 
pore types

Marzouk, Tazenaki, Suzuki (1998), Clerke et al. (2008) –
MICP based
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Pore Throat Size Classes
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Core Based Pore Observation Tools vs. Scale 
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Microporosity Definitions
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Observation: Microporosity definitions are driven by 
observation scale limits of specific tool
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Devonian Carbonate Field  Pore Types 
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Carboniferous Field - Interparticle Porosity   
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Carboniferous Field - Microporosity
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 Conventional (petrographic) classification as microporosity
 MICP shows multimodality of pore throats as well as 

mixture which confirms conventional classification is not 
adequate here
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Cretaceous and Carboniferous Fields 
– Phi-K by Pore types
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Conventional pore typing reduces perm  uncertainty from 5 orders of magnitude 
(all) to  4 orders (vuggy, moldic, IC), 3 orders (microporosity) and 2 orders 
(interparticle) 
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Triassic Field - Phi- K by  Pore Throat Size 
Classes 
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(1) MICP Grouping PTG 

(3) IPT-from logs 
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of length and pore types 
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Pore Type Prediction Workflow
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Vuggy/Moldic Porosity form FMI & NMR 
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Conclusions

• Pore system investigation tools should cover full range of 

the pore size/throat scales; carbonates covers 7 orders of 

magnitude (nano to cm scale)

• Conventional pore typing methods often fail due to the 

weak link to geology and/or flow properties in bigger scale 

• The proposed pore typing workflow integrates different 

scales and can accommodate different data scenarios

• Pore type definitions should be linked to dynamic/flow 

properties and geological processes
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