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Abstract

Hydrothermal dolomites occur in Precambrian to Cenozoic strata, with many models for hydrothermal dolomite emphasizing proximity to
faults. Although some hydrothermal dolomites occur adjacent to significant faults, many do not. In this presentation, hydrothermal dolomite is
described in three intervals and locations — Wabamun Group (Upper Devonian) in western Canada, Swan Hills Formation (Middle Devonian)
in western Canada, and the upper Pennsylvanian at Reinecke Field in west Texas. In all three areas, petrographic and stable isotope data
indicate dolomitization at high temperatures after moderate to deep burial.

Porous dolomites are surrounded by impermeable Wabamun limestones creating stratigraphic traps that are scattered across the southern Peace
River Arch in western Alberta. Many hydrothermal dolomites in the Wabamun follow depositional facies and early dolomitization. Some oil
fields are adjacent to mappable faults, but many are not. Many of the Wabamun fields were discovered by 3D seismic data targeting anomalies
away from faults.

Porous hydrothermal dolomites in and around Rosevear Field in western Alberta occur in grainstones and grain-rich stromatoporoid
boundstones. Adjacent micrite-rich facies are generally not dolomitized and not porous, creating the stratigraphic traps at Rosevear Field.
Hydrothermal brines apparently moved up into platform-margin grainstones and then moved long distances along the permeable platform
margin and connected embayments.

At Reinecke Field in west Texas, hydrothermal dolomites occur in an upper Pennsylvanian limestone buildup. The hydrothermal dolomites
created high-permeability horizontal and vertical “raceways” within the largely limestone reservoir. Those “raceways” fundamentally affected
oil production during primary, secondary, and CO; recovery at Reinecke Field.

Hydrothermal dolomites are important hydrocarbon reservoirs in many parts of the world. They have excellent reservoir characteristic because
of their large crystal sizes, vugs, and fractures. Many factors other than faults can control their distribution, including depositional facies, early



dolomite, highly saline brines in the basin, and convective flow. Careful petrography, collection of stable isotope data, and a good
understanding of the basin history can help predict these types of reservoirs in the subsurface.
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Although a volumetrically minor part of the rock
record, hydrothermal dolomites are important oil
reservoirs & associated with many ore deposits
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Although some hydrothermal dolomites occur adjacent to faults,
many do not.

Understanding the controls on hydrothermal dolomite is
important for predicting their distribution.
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Wabamun Dolomites, south Peace River Arch

* Porous reservoir dolomites are surrounded by non-porous limestone
creating stratigraphic traps
e 2 generations of dolomite,
— Early replacive
* Dull green fluorescence

* Petrographically early (before fracturing)
e High 60 (low temperature)

— Late, hydrothermal replacive & pore-lining cement
e Black & yellow fluorescence
e Petrographically late (before and after fracturing)
e Low 60 (high temperature)

— Most samples are a mixture
e Hydrothermal dolomite occurs with early dolomite and mud mounds

e Substantial dissolution was associated with hydrothermal dolomite causing
vugs, fractures, collapse, and geopetal structures

e Some hydrothermal dolomite bodies are near faults, many are not
e (Can be found using 3D seismic-
— differential compaction sometimes created highs at top Wabamun,

— collapse created lows at top Wabamun
— irregular dissolution caused disrupted seismic in the middle
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DISTRIBUTION OF DOLOMITE IN THE WABAMUN
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Dolomite occurs as isolated patches within Wabamun limestone.
Some dolomites are adjacent to faults. Most are not. Modified from Saller and Yaremko, 1994



Understanding where hydrothermal dolomite isn’t, is
critical to predicting where it is.
We need to Understand Depositional Facies & Structural

Setting
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Wabamun Limestones are commonly fossiliferous
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Wabamun dolomites are generally sparsely
fossiliferous wackestones & mudstone.

Fractures & brecciation are common &
related to dissolution during hydrothermal
dolomitization

Modified from
Saller and
Yaremko, 1994
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2 generations of dolomite: most rocks are mixtures Fracture in Replacive dolomite &

Early replacive: Dull green fluorescence; Before fracturing

Late, hydrothermal: replacive & pore-lining cement £
Black & yellow fluorescence; Before and after fracturing

Late pore &
lining dolomite
cement '

(L) overgrows
replacive
dolomite (R).
The rest of
the large pore
was filled by
even later
calcite
cement (C)

Extinction of dolomite crystals on both sides of

Modified from Saller I
: 1 fracture matches, indicating dolomite before fractures

and Yaremko, 1994



Stable Isotope Compositions of
Wabamun Limestones and Dolomite

Hitchon and Friedman, 1969, Alberta Basin

Devonian waters are +3 to +7

6180 (water)= +3%0 ~150°C 6180= +5%0 ~135°C

i &
8

Large range in 680 with
consistent &%3C suggests
dolomite precipitated over a
large range in temperatures
or mixing of a high and low
temperature end-member

Increasing
Temperature

Modified from Saller and Yaremko, 1994
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Fluid Inclusions Wabamun
Peace River Arch
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= Burrowed dolomites dominate.
Some burrow fills are dense

= Some burrow fills have porous sucrosic
dolomite

= Some of those porous burrow fills have
geopetal structures suggesting
dolomite crystals falling into open
voids

Porous geopetal burrow fills (P)

1822.3M
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Modified from Saller and Yaremko, 1994
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Multiple generations of dolomite crystal
fills in certain burrows
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Wabamun Dolomites have High

Vertical & Horizontal Permeability
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MODEL FOR EARLY, NEAR-SURFACE DOLOMITIZATION
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Top Wabamun

Winterburn Dolomite

Stage 1: Early dolomitization during shallow burial creates porous, dolomitized
areas surrounded by nonporous limestone. Burial compaction preferentially
fractures more lithified dolomites.

Dolomitization - dissolution - collapse zone at margins of dolomite
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Stage 2: Late dolomitization and dissolution. Hot burial fluids move through
permeable Winterburn dolomite into porous Wabamun dolomite. Burial
fluids preferentially dissolve and/or dolomitize limestone adjacent to dolomite.

Modified from Saller and Yaremko, 1994
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L s00-300m = . . . . .
| ﬂ Wabamun dolomites have a distinct seismic

= signature in 3D data

1. Structural high due to differential compaction

2. Thinning of overlying Banff due to early
differential compaction

3. Disrupted seismic within the Wabamun
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Some dolomites are adjacent to faults. Most are not. Modified from Saller and Yaremko, 1994
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SWAN HILLS RESERVOIRS, Porous, hydrothermal dolomites occur
ALBERTA BASIN, CANADA
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Geochemistry of Rosevear Dolomites
(Kaufman et al., 1990, 1991)

Fluid Inclusions
— Th~127-146°C
— Tf~ 21-24 wt% equivalent NaCl

6180 of dolomites -6.2 to -10.3
(PDB)

6180 values (mean=-7.5%o, PDB)

Saline waters 6180 of 3-7%o0
(Hitchon and Friedman, 1969)

T = 135°C for 6180 dolomite=-
7.5%o0, PDB and water 6130= 5%o
(SMOW)

All data are consistent with
dolomitization involving waters
that precipitated halite at high
temperatures
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SWAN HILLS DEPOSITIONAL MODEL Liﬂ
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HYDROTHERMAL DOLOMITE

. " i : -rl S
— Introduction e e K
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Dolomite overgrowing
stylolite

‘] Vugs & coarse intercrystalline
" porosity cause high permeability

From Saller and Dickson, 2011
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Reinecke Field: Porosity vs Permeability
Colored by Litholog
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FPetroleum Inclusion
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gstone

| O Limestone above 100 |]
O Limestone below 100
@ Dolomite

Stable carbon and oxygen
Isotope compositions of
carbonate samples from
Reinecke Field indicate
dolomites formed at high
temperature.
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SEISMIC LINE OVER REINECKE FIELD
Note lack of faulting
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Paleozoic “reefal” buildup, Reinecke field, west Texas, United States, in Seismic imaging of carbonate reservoirs and systems: AAPG Memoir 81, p. 107— 122.




Hydrothermal Dolomitization occurred by Convective
Flow of Dense Brines associated with Halite Precipitation
during the Late Permian
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Reinecke Field
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Reinecke Full Field Simulation

Reinecke Field is a Single Tank.

During Primary & Secondary Recovery,
Bottomwater Drive Effectively Pushed
Oil to Wells at Top of Reservoir
(Recovery of >50% OOIP)

From Saller, A. H., S. Walden, S.

I Robertson, R. Nims, J. Schwab, H.

UNIT-78 Hagiwara, and S. Mizohata, 2004, Three-
B dimensional seismic imaging and

reservoir modeling of an upper Paleozoic

“reefal” buildup, Reinecke field, west

Texas, United States, in Seismic imaging

of carbonate reservoirs and systems:

AAPG Memoir 81, p. 107— 122.
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Crestal CO, Flood Produced Residual Oil

but Oil Production & CO, was Heterogeneous

CO, escaped South Dome
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Hydrothermal dolomites are important hydrocarbon
reservoirs in many parts of the world

 Many factors other than faults can control the distribution
of hydrothermal dolomite including Top Wabamun
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Factors other than faults controlling distribution

3. High salinity brines in the basin (associated with salt deposition)
4. Convective Flow
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Hydrothermal dolomites have

e Excellent reservoir characteristics (including high horizontal &
vertical permeability) because of

— large crystal size,
— vugs and fractures

e Careful petrography, collecting geochemical data, and a good
understanding of the basin history can help predict hydrothermal
dolomite reservoirs in the subsurface
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