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Abstract

Burial history analysis of the Barnett source-rock reservoir (SRR) area shows a complex history of burial and uplift/erosion. The initial deep
burial of the area as part of the Fort Worth foreland basin in front of the advancing Ouachita fold belt resulted in hydrocarbon generation and
expulsion of oil and gas in the Pennsylvanian and Permian basins. This was accompanied by high overpressures that are capable of fracturing
the source rock to allow the primary migration of hydrocarbons. The regional stress field at that time was related to foreland basin tectonics and
was different from the current stress field. In the Triassic and Jurassic periods, when the Gulf of Mexico basin opened, the Barnett core area
was uplifted, and 7,000 ft (2,134 m) of overburden was removed in some areas, which contributed to the filling in of the Permian basin to the
west. The stress field was likely deviatoric, away from the uplifted eroding highlands, and another set of fractures may have been induced. At
the present time, the stress regime is oriented such that the younger set of induced fractures is critically stressed. Hydraulic fracturing opens
these younger fractures and reconnects the borehole to the older set of fractures, thereby creating a complex fracture system and allowing the
production of hydrocarbons at a commercial rate.

Burial history analysis of the Haynesville SRR reveals a paleogeomechanic and paleogeographic explanation for horizontal fractures that have
been observed in core. A compressional stress regime that allows the development of horizontal fractures requires that vertical or overburden is
the minimum principal stress. Often, this is accompanied by the presence of thrust faults; however, thrust faulting is not readily observed in the
Haynesville area, but horizontal fractures are present. The stress regime was developed during the mid-Cretaceous unconformity when the
ancestral Sabine uplift was active. A deep-seated volcanic intrusion may be the ultimate cause of the uplift, which would have provided an
increased heat flow that coincided with the maximum burial of the SRR. High internal pressures from hydrocarbon generation and migration,
therefore, coincided with overburden removal with little horizontal compression, and the overburden was uplifted to allow the emplacement of
horizontal mineral-filled fractures.
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Abstract

Burial history analysis of the Barnett Source Rock Reservoir (SRR) area shows a
complex history of burial and uplift/erosion. The initial deep burial of the area as part
of the Fort Worth foreland basin in front of the advancing Ouachita fold belt resulted in
hydrocarbon generation and expulsion of oil and gas in the Pennsylvanian and
Permian. This was accompanied by high overpressures that are capable of fracturing
the source rock to allow the primary migration of hydrocarbons. The regional stress
field at that time was related to foreland basin tectonics and was different than the
current stress field. In the Triassic and Jurassic, when the Gulf of Mexico basin
opened, the Barnett core area was uplifted and 7,000 ft (2134 m) of overburden was
removed in some areas and contributed to the filling-in of the Permian basin to the
west. The stress field was likely deviatoric away from the uplifted eroding highlands
and another set of fractures may have been induced. At the present time, the stress
regime Is oriented such that the younger set of induced fractures are critically
stressed. Hydraulic fracturing opens these younger fractures and reconnects the
borehole to the older set of fractures, thereby creating a complex fracture system and
allows the production of hydrocarbons at a commercial rate.

Burial history analysis of the Haynesville SRR reveals a paleogeomechanic and
paleogeographic explanation for horizontal fractures that have been observed in core.
A compressional stress regime that allows the development of horizontal fractures
requires that vertical or overburden is the minimum principal stress. Often this is
accompanied by the presence of thrust faults, however thrust faulting is not readily
observed in the Haynesville area, but horizontal fractures are present. The stress
regime was developed during the mid-Cretaceous unconformity when the ancestral
Sabine uplift was active. A deep-seated volcanic intrusion may be the ultimate cause
of the uplift, and this would have provided an increased heat flow that coincided with
the maximum burial of the SRR. High internal pressures from hydrocarbon generation
and migration therefore coincided with overburden removal with little horizontal
compression, and the overburden was uplifted in order to allow the emplacement of
horizontal mineral-filled fractures.




Barnett Shale Core Area: Modeling & Paleogeomechanics

1D Burial History

d "' Map | "\'ﬁ Input | Cr Parameters | by Graphs | Feports | 4
3 Burial | @ Petroleum Swstems | @ Depth | @ Age | @ Cross Plok (depth) | @ Cross Plok {age) | 3 Radar Plak | 4 = B J b |
Turner B
Paleozaic Cenazaic
C T
i Surf
' H K
|'_‘| —
Strawn
Strm Wk
-2000 —
Lwr Strwn
-40on < HMoka
Ak Bend
-G000 —
FIJIF
= E%Eﬂ:urg
E Lwr Brmit
c ¥
= \
Barnett .
W _go00 D . t d L,
: .::::..-.1._
CMP=STATOIL FF;TH=THF LOMC) o i Camb
TI=2.0;KEXP=Sat;PRM=PL B - e
DI=1540.42;Abs OFF W
-10000 — S
PN .
1 SR -
-12000 T
. T [ ]
Uplift &
o i
.-n._-.:%_-.':-ri
- 14000 — = =
Mlgratlon Early Mature (ail) [0.5 - 0.7]
I Mid Mature (oil) [0.7 - 1.0]
M Late Mature (oil) [1.0 - 1.3]
[T Main %as Generation [1.3 - 2.8]
I I I | I I I I | T t=D
500 450 400 350 300 250 200 150 100 50 u]
Age (my)

Barnett SRR Deposition
Early Mississippian: 340 Ma

Blakey, 2011: http://www.nau.edu/RCB.html

Late Permian: 260 Ma

Sy = NW-SE and is compressional at the
time of primary generation (and maximum
pore pressure), and the main episode of :
primary migration of gas from the Barnett

Blakey, 2011: http://www.nau.edu/RCB.html

S_ome Deep Burial Effects on SRRs

ncreased temperature & hydrostatic pressure
_oss of porosity due to > overburden stress
_oss of permeability

Cementation

Clay diagenesis (smectite > illite)

Hydrocarbon generation

Expulsion of oil, gas, and water

Cracking of unexpelled oil to gas & expulsion
Overpressuring and microfracturing w/i SRR
Macrofracturing oriented wrt regional stress field
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Sy = NE-SW and is extensional (deviatoric, Qactuall'«,r} at the time of the creation of the
secondary set of joints/fractures coTnchenft with the early opening of the Gulf of Mexico
basin. The highlands just to the South of tﬁie Ft. Worth Basin are being eroded and
>6,000 ft of section is removed from abcu‘uie the Barnett Sh core area during this time.
Overpressures could easily be extremely high due to unloading.

; ; e TTp—
. " - b ~ e e g b
i . = ¥ -.":-"" o
e -
s

_S_ome Effects of Unloading by Erosion on SRRs

Lowered temperature & vertical stress
Porosity remains essentially the same & permeability remains low
Cementation of open fractures and large pores

Hydrocarbon generation & migration ceases
High overpressuring remains, due to low permeability
Stress field is reoriented and changes rom compressional to extensional
Macrofracturing (|| to S;) due to S, reduction while S, remains high
Clays now become undersaturated wrt their temperature and pressure

since rehydration water is not available (low perm) => sub-irreducible

water

saturation

Barnett Stress Regime Today

Sy=NE-SW S,~=S, normal to strike-slip stress
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Some Basic Assumptions wrt Microseismic & Natural Fractures
[ ] Microseismic Events (MSE) are associated with natural fractures that have been reopened or reoriented by hydraulic fracturing

[ ] MSEs occur along or near the induced hydraulic fractures

[ ] MSEs are not as extensive an the volume containing the actual fluid movement (ex: killed wells)

[ ] the dataset is therefore a subset of the zones of weakness that are in the Earth and that have been affected by the fracturing

[ ] Uncertainty in location needs to be included in the analysis

Frac Stage

The Observed Complexity

Rédangular Grid: Directional Analysis of Each

Ohly events from each stage are included at

91°

Projection; Mercator
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Complexity Interpreted to be mainly the
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trends may be seen

The NE-SW system intersects
numerous of the older NW-SE joints
(micro faults?) (primary fractures?)
yielding complexity.

Result of Pgleotectonics

S, & S, are nearly isotropic, but with
enough difference to influence
hydraulic fracturing and to critically
stress the NE-SW system to allow it

to open easily.

Present-day Stress =

Normal to Strike-slip




Complexity of the Final Hydraulic Fracture depends on:
1) Complexity of the Natural Fracture System
2) the Mechanical Properties of the Layers
3) the Stress Anisotropy, among others

Complex Natural Frac Network in Brittle Rocks /w
Varying Present-day Stress Anisotropy
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Layered rocks have different mechanical properties.

They will have different fracture patterns (orientation, spacing and dip).

Simple Frac Network in Ductile Rocks

/w Low Stress Anisotropy /w High Stress Anisotropy

Simple Frac Network in Ductile Rocks

Fracture Network Analysis from MicroSeismic Data

Analysis of Individual Fracture Families
(similar orientation / spacing / dip)

|dentification of All Fractures in Real-Time
during the Hydraulic Fracturing Job

Haynesville Shale Horizontal Fractures: Modeling & Paleogeomechanics

The Problem: How do Horizontal Fractures form in the absence of a thrust faulting stress regime?

Cores Viewed in the Haynesville Core Workshop BEG Core
Research Center, Austin, Tx

June 22, 2011
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Horizontal and Vertical Calcite-Filled Fractures

] Horizontal faults require that the overburden be lifted to provide the acommodation space for the fracture fill
] The minimum stress must be vertical (SH > Sh > Sv)
. ] No thrust faults or local folding is observed in the area: only regional uplift
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Origin of the Cretaceous Sabine Uplift

Regional Stress Regime from the PASSIVE PRE-CO?MPHESSIDN STAGE

Laramide tectonics in Mexico

TEXAS

[ ] Far_fie|d Compression related to ear|y . aramide tectonics in Mexico go(r

[ ] Deep-seated volcanic intrusion (related to the Arkansas volcanics) S

Preferred Interpretation from Ewing (2009)
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Figure 6. Cretaceous uplifts and igneous features 1n the northern Gulf of Mexico. Data on uplifts from
Hazzard et al. (1947), Johnson (1958), Granata (1963), Shreveport Geological Society (1968), and other
sources. Igneous features from Kidwell (1951), Hildenbrand et al. (1977), Ewing and Caran (1982),

and Byerly (1991). Numbers are radiometric ages 11?1 Ma (million vears before present). 1 m = ~3.28 ft. Ewing 2009

Horizontal Fracture & Shell Fragments

Good candidates f orizontal calcite-filled fracture
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Figure 12. Map view of compressive events that fui*med the Sabine Uplift from the earlier mid-rift
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Figure 7. Magnetic anomalies of the northern Gulf ﬂf Mexico Basin (from NAMAG, 2002, courtesy of
the U.S. Geological Survey). Notice high-amplitude anomalies in the Little Rock and Monroe areas,

and under the Sabine Uplift (Shelby County Auuma?.}'}.
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1D GeoHistory Modeling / Heat Flow / Expulsion of Oil and Gas

(Timing of Intense Overpressuring from

Source Rock Generation / Expulsion)
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Ewing 2009
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[ ] Complex Fracture Systems are established by a
combination of HC generation and paleogeomechanics

[ ] Hydraulic Fracturing reopens the fractures that are
oriented in the preferred stress direction and influenced
heavily by the original complexity of the system. The
present-day stress anisotropy and the mechanical
stratigraphy

[ ] Microseismic analysis can identify fracture families

[ ] Horizontal Fractures in the Haynesville result from the
paleogeomechanics related to the K Sabine Uplift
(unloading accompanied by high HF)

[ ] Basin GeoHistory analysis can help understand the
complex fracture systems that are observed in SRR
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