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Abstract 

 
The Woodford Shale in Oklahoma commonly is subdivided into Lower, Middle, and Upper members. Yet, based upon lithologic variability 
determined from core and/or well logs, the members can be further subdivided, particularly the productive Middle member. Subdivision is 
readily accomplished within the context of sequence stratigraphy (Slatt and Rodriguez, 2012): the Woodford comprises a 2nd order 
depositional sequence comprised of several 3rd (and most likely 4th) order (para)sequences. These intervals are verified by a combination of 
well and core descriptions, and more recently, by palynology (Molinares, in prep.). Such parasequences are correlative and mappable for 
considerable distances using well logs and 3D seismic (when calibrated with logs) (Amorocho, 2012). 
 
Sequence stratigraphic intervals and their rock properties can be related to geomechanical (as well as geochemical) properties. Geomechanical 
characterization has led to development of the concept of brittle-ductile couplets, that can be correlated and mapped (Slatt and Abousleiman, 
2011). Brittle strata tend to be enriched in biogenic quartz and/or carbonate material and ductile strata tend to be enriched in clays and organic 
matter. 
 
Because depositional sequences and parasequences occur at a variety of geologic time scales, brittle-ductile couplets also occur at a variety of 
stratigraphic scales. Thus, there is a natural, predictable link between sequence stratigraphy and geomechanics. The recognition of such 
couplets can better target landing zones for horizontal drilling and artificial fracturing. 
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An interval is classified (by drillers) to be: 

Ductile 

A lot of pumping to break 

High fracture gradient 

Brittle 

Not as much as the “ductile” 
intervals 

Lower fracture gradient 

BI = (Q + Dol + Lm)/ (Q + Dol + Lm + Cl + TOC) 
Where BI = brittleness  index; Q = quartz; C l = clay; Dol = dolomite; Lm = limestone (calcite); TOC = Total organic carbon 

 
 

Mineralogic affect on rock fracturability (brittleness) (Wang and Gale, 2009) 
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Geomechanical Measures of rock deformation 
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Youngs modulus € and Poissons Ratio (PR) 
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Green is target (oil) zone 

 (relatively high silica) 

Red is drilling hazard (relatively 

 high clay content) 

Well dipped into Red (ductile) and could not 
 come back into Green (brittle). 
Result:  Uneconomic well 

Well landed low, but came back 
 into Green (brittle) 
 target zone and 
 stayed. 
Result:  Very economic well 
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Drilling opportunities?? 
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Apply natural fracture distribution to hydraulic fracturing?? 
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-Hydraulic fractures  propagate through brittle chert and ductile clay? 
 
 -Proppant goes into both brittle chert and ductile clay 
 
  -After fracturing, the  fractures in chert remain open 
 
   -But the ductile beds encase proppant  
    and close?? 



Therefore, layering is important to strength 

Carbonate content also is of secondary importance 
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Upscaling stratigraphy and geomechanics 

Vertical  
well 

Horizontal well 

7731.

8 ft 

773

2 ft 

7732.

2 ft 

5 

mm 



Why different initial production, 
Decline curves, and payouts?? 
 
Geologic factors?? How to 
Optimize these factors?? 




