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Abstract

Basin and petroleum system modeling (BPSM) simulates the generation, expulsion, migration, accumulation, and loss of hydrocarbons in
conventional and unconventional petroleum systems. This paper describes three new advances in modeling of geochemical processes:
thermochemical sulfate reduction (TSR) modeling for H,S prediction, as well as saturates-aromatics-resins-asphaltene (SARA) modeling and
biodegradation modeling for prediction of oil quality.

TSR is a complex redox reaction controlled by reservoir chemistry and thermal history that converts petroleum and pore water sulfate to solid
bitumen, carbon dioxide, and hydrogen sulfide. Accurate TSR modeling is important because it predicts H,S, which is toxic, corrosive, and
increases production costs. A new approach to model TSR enables concentrations of Mg?*, Ca**, and SO,* in pore water and sulfur in oil to be
estimated based on reservoir lithology and oil quality. Model output as H,S-risk distribution identifies areas where TSR can occur.

Predictions of aromatic and asphaltene content in oil cannot be made using standard published kinetics. A new SARA kinetic modeling
approach includes 11 components (four bitumen, two oil, three hydrocarbon gas, CO,, and H,S) and can be used to improve predictions of oil
quality. Additional features include complex secondary cracking through a multi-stage reaction network for bitumen-oil, oil-gas, and bitumen-
gas, as well as a special adsorption model for the bitumen components. Components are lumped according to physical and chemical properties
in order to minimize processing time. The approach allows prediction of asphaltene flocculation and tar mats as well as CO, and H,S
formation.

Biodegradation modeling was previously performed using BPSM simulation results, such as reservoir charge and temperature history.
Decoupled post-processing was then applied to determine biodegradation risk. However, accurate predictions of petroleum properties are not
possible using this approach. The new approach features full coupling of biodegradation into the BPSM simulation. Phase kinetics (14-



component model) is used with component-specific biodegradability, relative biodegradation ratios, temperature-dependent biodegradation
rates, and paleopasteurization for more accurate predictions of API, GOR, viscosity, and CO, yields.
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R&D Focus: Reservoir and Source Rock Process Models
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Outline: Modeling of Three Key Subsurface Processes

* Thermochemical Sulfate Reduction (TSR)
v

v

° Biodegradation
v

v

° Saturates, Aromatics, Resins, Asphaltenes (SARA)
v

v



Outline: Modeling of Three Key Subsurface Processes

* Thermochemical Sulfate Reduction (TSR)
v Goal: Improve regional H,S predictions
v Example: Reservoirs in Offshore Tunisia



Thermochemical Sulfate Reduction (TSR) is Complex

* H,S is toxic, highly
corrosive, and increases ‘
production costs. >120°C
° H,S content is controlled
by chemistry and thermal
history of the reservaoir.

* Accurate prediction of
H,S trends = competitive
advantage.

Prediction of H,S during TSR
* Catalysts: Mg?*and H,S
° H,Stracking during migration




H,S is Handled as a Separate Component in Modeling
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3D Model Predicts H,S in Reservoirs, Offshore Tunisia
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TSR Modeling Provides Maps of H,S Risk and Concentration
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Outline: Modeling of Three Key Subsurface Processes

v
v

° Biodegradation
v Goal: Improve predictions of oil quality
v Example: Reservoirs in Campos Basin, Offshore Brazil



Biodegradation Modeling: Temperature, Degradability

4C,sHa, + 30H,0 — 49CH, + 15CO,

* In-reservoir biodegradation can
reduce crude oil quality.

* Biodegradation is controlled by
reservoir temperature, charge and
residence time, oil-water-contact
surface area, and other factors.

* Paleopasteurization (>80°C) stops
biodegradation.

* Accurate prediction of gas-oil Fresh

ratio (GOR), API, CO, trends = Oil
competitive advantage. Mass d mi _ A Degradation
m, dt ~ il Rate r;r

Biodegradation Model Features

e Component-specific biodegradability model

* Includes paleopasteurization

° Output of corrected GORI, API, and CO, content

Hantschel and Kauerauf (2009)




Degradation Declines Near Paleopasteurization Temperature
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‘Degradability’ Limits Degradation within Compound Classes

4C,<H., + 30H,0 — 49CH, + 15CO,

Cogzcs)lsmd Degrafi(ej:a::on Degradability
Methane 0.00 0.00
Ethane 0.40 1.00
Propane 1.00 1.00
I-Butane 0.80 1.00
n-Butane 1.00 1.00
i-Pentane 0.70 1.00
n-Pentane 0.80 1.00
n-Hexane 0.80 1.00
C,-Cys 1.00 0.80
Ci6-Cos 1.00 0.60
C,6-Css 0.80 0.40
C36-Cus 0.30 0.20
Cu6-Css 0.20 0.10
Csss 0.10 0.02

Lighter alkanes are more
easily biodegraded.

Blumenstein et al. (2008),
Hantschel and Kauerauf (2009)



A Test Field was Selected for Study, Offshore Brazil
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Flowpaths, Source Maturity Before Opening Salt Windows
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Fields and Compositions After Opening of Salt Windows

1 55 Ma: After Opening of
_Salt Windows

0 m, 0,00 m
390000

7580000

70000

Field Report: OOIP 2200 Mbarrels,
APl 28-31°,GOR: 110 m3/m3
Cormponent [maze®] Liquid W apor Flashed to
Bl FE_PED+ 057 000 surface
0 Methane C 000 011 conditions [PR]:
B FE_PED 063 000| e
= PE_PA0 109 000 rorm Ligui
PE_P20 173 000
B FK P20 358 0| T fremapor
PE_P10 262 002 !
B rHexane 039 04.4 ” _ PettoFlash.. |
B nentane oll B2l Liquid (Mbarrels] B4 47
B -Butans 007 096 Y apor: [mizrm) 13308 04
I i-Eutane 002 040 AP 25 84
= e Qrge Gon oy Gmel | A
B Hethane o0o 331 CGR: [ 34m ™3] 0.01




Compartments in Test Field Show Variable API Gravity
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Model Improves API Prediction in Compartment 2
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Outline: Modeling of Three Key Subsurface Processes

v
v

° Saturates, Aromatics, Resins, Asphaltenes (SARA)
v Goal: Improve predictions of oil quality
v Example: Shale oil quality prediction on Alaska North Slope



Modeling Saturates, Aromatics, Resins, Asphaltenes (SARA)

* SARA kinetics can be used SARA Reaction
to predict oil quality. Network

e Component cracking is @ ‘
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Early Kinetic Methods: Predict Quality of Expelled Petroleum
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New Kinetic Methods: Properties of Retained Petroleum
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Alaska North Slope Study lllustrates SARA Modeling
275,000 km2, 406 wells
48,000 km seismic data
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Model Includes Detailed Stratigraphy and Subsurface Maps
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SARA Simulation: Properties of Oil Retained in Source Rock

High API (early loss of

\“\m\m\ heavy ends through seal)

Low APl on Barrow
Arch (low maturity)

Elevated API toward
foothills (south)

No API (very
high maturity)

M Highlight
Element ID: 853381

O

[mass3%] Liguid Vapar

Ethane 00.3

Hydrogen Sulphide 05.5
Il Carbon Dioxide 10.7
Bl C3cs 00.4
[ AT
Il C1545AT 40.4
Il C15+ARD 14.6 ©
I S0 15.6 L
Il 2sphaltene 05.5 €
L

Source Rock SARA {0'0
(Saturates, Aromatics, S
Resins, Asphaltenes)




Play Chance Map: Maturation of Shublik Fm. from 3D Model
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Total Play Chance Map Combines Many Source Risk Maps
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Focused Total Play Chance Map for Shublik Shale Oil
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3D Model Identified Shublik Sweet Spots Early
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Conclusions

° Recent R&D has focused on new tools to more accurately
model reservoir (e.g., TSR, biodegradation) and source
rock (e.g., SARA) processes.

° Correlations between measured and predicted variables,
e.g., APl gravity or GOR, are generally good, but exact
predictions are not expected due to input uncertainties.

°* The principal goal of current TSR, biodegradation, and
SARA models is to predict regional trends.

°* More R&D and careful parameter calibration will lead to
more accurate results.
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