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Abstract 

 
The industry is beginning to use hydraulic fracturing simulations that consider the presence of subsidiary natural fractures or similar 
discontinuities, and in-situ stresses. The most sophisticated of these models are coupled thermo-hydro-mechanical formulations, where the 
deformation of natural fractures is contingent on material properties of natural fractures, local pressure and the far-field stresses. 
 
These models provide insight into the complexity of the network of created, reopened and reactivated discontinuities that comprise the 
productive domain – that is often casually referred to as the stimulated reservoir volume. Progress is being made, industry-wide, in 
understanding the fracture complexity in different geologic domains – for example, geometric characteristics in a passive-margin setting can 
differ substantially from behavior in a strike-slip domain. Examples are provided, suggesting different geologically controlled morphologies 
resulting from the active interaction between the injected fluids, the pre-existing far-field stresses, and existing discontinuities –faults, fractures 
and bedding planes – and the consequences for microseismic activity. 
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Presenter’s notes: A foreland basin is a structural basin that develops adjacent and parallel to a mountain belt. Foreland basins form because the immense mass 
created by crustal thickening associated with the evolution of a mountain belt causes the lithosphere to bend, by a process known as lithospheric flexure. The width 
and depth of the foreland basin is determined by the flexural rigidity of the underlying lithosphere and the characteristics of the mountain belt. The foreland basin 
receives sediment that is eroded off the adjacent mountain belt, filling with thick sedimentary successions that thin away from the mountain belt. Foreland basins 
represent an end-member basin type, the other being rift basins. Space for sediments, accommodation space, is provided by loading and down-flexure to form 
foreland basins, in contrast to rift basins, where accommodation space is generated by lithospheric extension.
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