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Abstract

Fine-grained organic-rich rocks that have accumulated under anoxic conditions can begin generating methane soon after deposition, sometimes
at burial depths of several meters or so, as a consequence of microbially mediated degradation of organic matter. Biogenic methane migrates
upward through the zone of methanogenesis to the sulfate-methane transition zone (SMTZ), where anaerobic methane oxidation (AMO)
depletes interstitial water of seawater sulfate and methane to produce *C-depleted biocarbonate and **S-enriched sulfide. Methane flux is a
principal control on the depth below the seafloor of the SMTZ. Specifically, high methane flux rates, such as those described from modern
methane hydrates, result in the establishment of shallow (< 1 m) SMTZs. The Upper Devonian Rhinestreet-Angola-Pipe Creek-Hanover shale
succession of western New York provides a record of non-steady state burial and related AMO. Evidence of the latter includes thin (10-30 cm)
intervals moderately enriched in Fe and S, *C-depleted authigenic concretionary carbonate (5'°C =-11 to -14%o PDV), **S-enriched pyrite
(8°*S =24 - 25% CDV) associated with the carbonate, and an interval of **S-enriched (5**S = 43% CDV) barite nodules. Differential
compaction of host shale around concretions as well as the preservation of depositional clay grain microfabrics within concretions suggests that
the latter formed as a consequence of passive carbonate precipitation at subseafloor depths of ~ 1 m. The organic-rich Rhinestreet Shale, then,
appears to have been an especially active bioreactor that maintained a shallow SMTZ throughout the burial history of these deposits. Moreover,
multiple concretion intervals from the lower Rhinestreet Shale through the overlying organic-lean Angola Shale reflect episodes of AMO
induced by episodic reductions in sedimentation rate. Textural aspects of this succession, isotope data, and seemingly shallow SMTZ depths
are consistent with a robust methane source, perhaps even a gas hydrate. Indeed, recent modeling suggests that gas hydrates could have formed
beneath a warm, relatively shallow Middle to Late Devonian sea at burial depths of less than 300 m.
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Conclusions

-the Rhinestreet Shale and overlying deposits preserves a
record of the diagenetic effects of the anaerobic oxidation
of methane (AOM) sustained by a robust flux of biogenic
methane delivered from more deeply buried deposits;

-biogenic methane was probably sourced in the Rhinestreet
itself, but it is more likely that the bulk of the methane
originated in organic-rich intervals of the Marcellus Shale,
~ 125 m below the Rhinestreet in this region of the basin;

-modeling of the burial history of this region of the basin
precludes the influence of a thermogenic methane imprint at
this time (thanks to Nancy Rodriguez, Shell);



Conclusions

-non-steady-state sediment accumulation/burial focused
AOM at particular sediment horizons for extended periods of
time producing strong solid phase enrichment (1:3C-depleted
carbonate and 34S-enriched sulfides) along those intervals;

-the voluminous biogenic methane flux (very shallow SMT)
would have been favored by the abnormally warm oxygen-
deficient nature of the shallow Late Devonian sea;

-would have ensured a greater abundance of metabolizable
organic matter reaching the seafloor without oxidizing;

-elevated bottom temperatures of the Devonian ocean would have
accelerated the rate of microbially induced methane generation.
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