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Abstract

Regional gamma ray log cross-sections incorporating outcrop gamma measurements from eastern Kansas aid in delineating Desmoinesian
stratigraphy in eastern Colorado and western Kansas by tracing highly radioactive, regionally invariable shale units. A representative type log
of the Upper Cherokee and Marmaton groups in eastern Colorado presents the correction of local stratigraphic nomenclature. Sixty-three feet of
core (from southeast Colorado) in the Higginsville Limestone Member of the Fort Scott Formation upward through the Myrick Station
Limestone Member of the Pawnee Formation were studied to determine sedimentological and diagenetic controls on reservoir development.

Higginsville rocks are composed of subtidal to peritidal lime mudstone cycles overlain by a peloidal grainstone reservoir. Original porosity was
occluded by calcite and later dolomite cements, precipitated from fluids moving through fracture systems. Secondary porosity was later created
by mesogenetic dissolution proximal to stylolites and fractures. Rapid eustatic drowning caused the deposition of the Labette Shale Formation
and the overlying Anna Shale Member of the Pawnee Formation. Carbonate turbidites in the Anna Shale were sourced by higher-energy facies
along the Las Animas Arch. Myrick Station rocks are low-energy phylloid algal wackestones overlain by a Chaetetes reef. A combination of
subsurface mapping and well log analysis is sufficient to predict reservoir facies in the Myrick Station Limestone. However, mesogenetic
dissolution porosity such as that found in the Higginsville Limestone often proves impossible to predict with satisfactory success.
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Introduction

Higginsville Limestone and Myrick Station Limestone Reservoirs in Eastern Colorado
Purpose of the Study

139' FNL & 2438' FWL NE/4
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Introduction

Higginsville Limestone and Myrick Station Limestone Reservoirs in Eastern Colorado

« Myrick Station Limestone Reservoir « Higginsville Limestone Reservoir

* Best Known Reserves (1 well)- 60 MBO »  Best Known Reserves (1 well)- 130 MBO
e Thickness- 0-15° e  Thickness- 0-15’

*  Porosity- Negligible to >20% + Porosity- Negligible to >30%

*  Pressure-depletion Drive *  Pressure-depletion Drive

* Associated Water * Associated Water

¢ Often Associated Gas * Often Associated Gas

*Good Bailout zones, but predictions are difficult™®

OUTLINE

* Regional Overview/Study Area
* Lithostratigraphy
* Core Study
e Sedimentology
e Diagenesis/Thin section petrography
* Exploration implications



Study Area

-Structures and Basins

e [.as Animas Arch

— Positive Structure during Precambrian
— Present-day structure acquired during

Laramide
* Apishapa Uplift
— Wichita Orogeny
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Study Area

* Qverlies the Brandon Axis of

the Las Animas Arch
* Overlies the Cavalry Oil Field | | B |
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Study Area

~5,000 acres
Approximately 35 Exploratory Wells
* Available Logs, Completion,
Drill-Stem Test

One available core
Myrick Station Production (Purple)
Higginsville Production (Red)




Stratigraphy

Merriam (1941)
Lower Pawnee Formation * Fort Scott Formation
« Myrick Station Lst. Mbr. * Higginsville Lst. Mbr.
* Anna Shale Mbr. * Little Osage Shale Mbr.
Labette Shale Formation * Blackjack Creek Lst. Mbr.

Pawnee

Limestone
Fm.

Marmaton Group

Fort Scott

Limestone
Fm.

Cabaniss
Formation

Cherokee Group




Stratigraphic Nomenclature

Eastern Colorado Nomenclature Western Kansas Nomenclature

Tension Pult:

3}

3 10

~37 miles
Regional Maps?




Lithostratigraphy

Bob Slamal’s Correlations
— Gamma Ray Log

— Desmoinesian carbonates are
too variable for long-distance
correlations

— Hot Shales are key

Outcrop Gamma

— Fort Scott Type Locality
(Merriam, 1941) NE/4 19-
25S-25E

~80-well cross-section

— Excello & Little Osage Shales

Outcrop Total Gamma
(counts per second)

200 cps 700 cps

Higginsville Limestone

TN L v s—=—=little Osage Shale

Vertical Scale (Feet)

Blackjack Creek Limestone

L\\\\\\\\“‘\\» Excello Shale

46 ft.



Representative Cross-Section

INDEX MAP AA'




Eastern Colorado Study Area to Fort Scott Type Locality
(Bourbon County, KS)
AA'
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SedlmentOIOgy Core Depth:~4146°

Higginsville Limestone Mbr. of the Fort Scott Formation (37.5”)
LOWER 26’

Core Depth:~4144°

Wilson (1969); Shinn (1983)

Matter (1967); Roehl (1967)



*Subtidal
*Peritidal

*Rapid, gradational contacts
from subtidal to peritidal
*Capped by Disconformities

Peritidal
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*Overlain by 5" LMS
*~6’ grainstone
*(Reservoir Objective)

High Energy
Shallow Marine

Subtidal

Peritidal
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Sedimentology

Higginsville Limestone Mbr. of the Fort Scott Formation (37.5”)
UPPER ~11.5°

N~



Sedimentology

Higginsville Limestone Mbr. of the Fort Scott Formation (37.57)
UPPER ~11.5°

A : :-(;?
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Core Depth: ~4113°

Core Depth: ~4115°



Sedimentology

Higginsville Limestone Mbr. of the Fort Scott Formation (37.5”)
UPPER ~11.5°

Core Depth: ~4115° Core Depth: ~4112°
Plane Light, 20X Plane Light, 20X



Core Depth: ~4110°

Hardground

Marine calcite cement
Broken and incorporated
into shale above during
drowning.

(e.g. Wilkinson, 1982)
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L
=
=3
-~
@
Y
g
-
—_
=
=
@»
g
)
20
=

Event 1 Lithosome

R / Disconformity
Lime Grainstone
~\ Erosional Contact
Lime Packstone y . y
‘ B - Gradational Contact

Phylloid Algal Wackestone .o [niraclasts

Lime Mudstone )g( Brecciation

Shale Reef Deposits

High Energy

Shallow Marine

Subtidal

Peritidal

Phylloid Algae
Crinoids
Bioturbation
Chaetetes

Foraminifera

Sedimentology |

R 4

Anna Shale =

»

Max. Wtr Depth  =—

| A

Labette Shale

Higginsville Lst.




ck Station Lst.
Event5 —»

Turbidite

Event 4

Deep Water

Anna Shale | v

High Energy
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Similar to Canyon (Middle Penn., West Texas) Limestones
(Saller et al., 1993)

Storm Deposits




-
o Moderate-Energy
= > o | Shallow Marine
.2 | Reef
S|lw
i E =~ [ Low-Energy
%Y = ) 4095° it Shallow Marine
o = > - =~z
Els = =
E P Tempestite
A % 4100° — — . I)IL;C]) \\;':\lc.rv
& |3 =
[7) E [ Hemipelagic
P g: Sediment
= ? '
= 4105 =
é Deep Water
Turbidite
Labette E 4110° ‘I.).c%‘p \\‘;{lcr ]
High Energy
N 4115° Shallow Marine
&5 o
=
3
>
= , % .
q=a 4120° Subtidal
S i
2
@
E 4125’ 4 oo /ﬁ( . Peritidal
-
Sle "
w = § Subtidal
THPA R
2 'ng 2 O”‘?& 2 Peritidal
o= = 5 |
T [E | 4135 % Subtidal
—
— .
% 4140° - /y; Peritidal
=
m &
4145’ % Subtidal
Ooo Peritidal
4148 A )Q(

Legend

Lime Grainstone

Lime Packstone

Phylloid Algal Wackestone

Lime Mudstone

Shale

v/ Disconformity

Erosional Contact

Gradational Contact 5

Oee Intraclasts

/ﬁ( Brecciation

Reef Deposits

-
@ Crinoids
Bioturbation
& Chaetetes

e Foraminifera

» Phylloid Algae




. Growth Form e e Connolly et al., 1989
L . * Suchy and West, 2001

Chaetetes Substratum
* Moderate Energy
Often perpendicular to
prevailing winds

e Draped over low-relief
~ structures or flanking
larger structures.
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Higginsville Lime Mudstone

Stylolites, Fractures, Cements

1 in.

0 in.

0 in.

1.) Fractures and dissolution

2.) Calcite Cement

3.) Stylolitization w/ gash fractures
4.) Further fracturing

4.) Dolomite Cement
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* Curved cleavage extinction= saddle dolomite (e.g. Radke and Mathis, 1980)
*  Mesogenetic Process



Calcite porosity occlusion in Higginsville Grainstone “Bathurst’s rule”
20X, plain light 80X, cross-nicols

“Bathurst’s rule”- Indicative of Phreatic calcite cement
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ALL: Plain Light; 20X o~ 3 AT AR \‘ fracture at 4115’



Diagenetic sequence of the Higginsville
Limestone

Minor fractures and dissolution
Precipitation of meteoric calcite

Stylolitization

— @Gash fractures

Saddle Dolomite

Minor mesogenetic dissolution

— Interparticle and intraparticle porosity proximal to stylolites and
fractures



Anna Limestones (Inferred turbidite)

Grainstone Packstone
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Neomorphic Overgrowth

Cross-nicols; 80X

“Bathurst’s Rule”

Cross-nicols; 80X

Crinoid overgrowth happens very quickly

Crinoids: single calcite crystal



Diagenetic Sequence within Anna

Meteoric calcite, including crinoid overgrowth
Stylolitization
Fracturing

Mesogenetic calcite cementation in fractures



- e s L | Myrick Station Limestone
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Myrick Station phylloid algal wackestone

Cross-nicols; 80X
Staine
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Within algal blad Interior lining of brachiopod
Aragonite dissolves, Aragonite cement,
Meteoric calcite fills, partially replaced by saddle dolomite.

then saddle dolomite partially replaces.



Foraminifera wackestone matrix with Chaetetes

Wackestone matrix Wackestone matrix

silty, Saddle dolomite and calcite dissolved
saddle dolomite porosity occlusion (mesogenetic dissolution)

Cross-nicols; 20X Cross-nicols; 80X



Chaetetes intraparticle porosity

Plain light; 20X

Chaetetes intraparticle porosity occluded by saddle

dolomite.

One nicol; 20X

Cross-nicols; 20X



Myrick Station Diagenetic sequence

Precipitation of high-magnesium marine calcite cement (evidence
within brachiopods)

Originally Aragonite P.A. dissolved upon exposure to meteoric
fluids

Resulting pores were filled with meteoric calcite cement
Stylolitization

Meteoric calcite was later partially replaced by saddle dolomite
Mesogenetic dissolution

*Two phases of dissolution?- Very little calcite remains in reef
facies



Diagenetic Sequence of the cored interval

The precipitation of aragonite cement within brachiopods in the Myrick Station
Limestone interval and calcite cement throughout the cored interval

Authogenic silica that originated from detrital quartz silt partially replaced particles
within the Higginsville lime mudstones.

Dissolution of aragonite phylloid algae

Meteoric calcite cement destroyed porosity throughout the entire cored interval
Deep burial and stylolitization, causing gash fractures.

Subsequent fracturing

Precipitation of saddle dolomite; subsequent replacement of calcite and adjoining
micrite by saddle dolomite

Mesogenetic dissolution

It is possible that multiple phases of dissolution occurred within the core; a first
event may have partially dissolved meteoric calcite cements, thus allowing later
fluids to invade and precipitate saddle dolomite. A later event may have then
caused minor dissolution of saddle dolomite and some remaining meteoric calcite.
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