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Abstract 
 

Carbonate reservoirs are characterized by significant heterogeneity at a number of scales, ranging from exploration to production and enhanced 

production scale. An understanding of how primary depositional facies, diagenesis, and the sequence stratigraphic framework control the 

development of pores in carbonate rocks, and how the variation in pore architecture influences reservoir permeability is a fundamental process 

in the accurate characterization of carbonate reservoirs. In addition, with the ubiquitous use of geostatistical models to define and predict 3-D 

reservoir architecture in the subsurface, it has become increasingly important to accurately define the probable geometric distribution of 

potential reservoirs and seals at multiple scales to provide geologically-based, three dimensional reservoir models that can be used to develop 

dynamic reservoir simulation and flow models. To effectively do this, the challenge is to integrate data on the primary depositional 

environment (facies, probable geometry, and susceptibility to diagenetic modification), the sequence stratigraphic framework, and the 

petrophysical characteristics of carbonates at multiple scales utilizing a combination of core, wireline logs, 3D seismic and the incorporation of 

both modern and ancient analogs. 

 

Mississippian carbonates of the Mid-Continent have been highly productive for several decades but with a move towards horizontal rather than 

vertical drilling, the internal heterogeneity of the unit has become even more apparent. A combination of outcrop and core work illustrates a 

distinct hierarchy in shallowing upward packages within most Mississippian reservoir units, with cycles ranging from a few meters thick, to 

10's of meters, and larger. Understanding the sequence stratigraphic framework at the meter and tens of meter scale will aid the producer in 

identifying key producing intervals and also enhance the prediction of internal flow units and seals. 
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Key Questions to be addressed by Project 
 
 
• Regional Biostratigraphy (conodonts) 
• Regional subsurface mapping 
• Development of Depositional Models (regional and 

production scale) 
• Characterize Reservoir Types  
• Develop high-frequency chronostratigraphy  
• Diagenesis – evolution of porosity  
• Petrophysics – tie to porosity and permeability and 

seismic attributes 
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Integrated Reservoir Characterization 
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Ritter and Grammer  (2008) 

Idealized Facies 
Succession from Core 
(High Frequency Cycle) 

• Define shallowing-
upward cycles 

• Transgressive and 
regressive patterns 

• Porosity enhanced 
or occluded at cycle 
caps depending on 
diagenesis 

• Define basic 
reservoir flow units 



Cantrell et al. (2004) 

Thin reservoir units controlled by high frequency cyclicity – 
Ghawar field, Saudi Arabia 



Current Outcrop and Subsurface Data Sets 
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Idealized Vertical Facies Succession –  
Core (Meramecean?) 
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Characterization of Carbonate Pore 
Architecture and Relationship to 

Permeability 



Carbonates 
have varying 
pore types 

that 
influence 

permeability  

Eberli, 2000 



CT Scans of Core for Pore Architecture 
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Anselmetti and Eberli (1999) 
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Core Plug Values 
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Predicting Permeability from Sonic Velocity? 
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Pore Architecture tied to Petrophysical 
Properties – can we Predict Permeability???  

1. Relate rock fabric to pore types by developing 
petrophysically significant facies 

 

2. Relate pore architecture to pore connectivity 
(permeability) to determine reservoir quality 

 

3. Use laboratory and log measured sonic velocity to 
establish a first order relationship between sonic 
velocity and pore type/pore network connectivity 

 

4. Tie to Wireline Logs 
 
 
 



Quantifying Pores:  Digital Image 
Analysis 

• ImagePro Plus 
• Color-cube 

segmentation 
• Can measure 

parameters for each 
pore 
– Area, length, width, 

roundness, perimeter 
• Pore parameters 

(measures of pore 
architecture) are 
calculated 
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Image Analysis to characterize size, shape and  
distribution of pores in thin section 

Thornton and Grammer (2010) 



Average percent error between actual and predicted  
p-wave velocity = 5.31% 

Thornton and Grammer (2010) 



R2 = 0.817 

Integrating porosity, P- and S-wave velocities, density and DIA parameters 

Thornton and Grammer (2010) 
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Nano-Scale Porosity and Permeability 

Field Emission Scanning 
Electron Microscopy (SEM) 
• Cube of Focused Ion Beam 

Cuts (15 nm Slices) 
• 10 nm Resolution Cube = 1,000,000 Oil 

Molecules 

Connected Pore 
Network 

• 1,300 nD 
Permeability 

Courtesy R. Garrison 



Summary – Some General Thoughts and Trends  
for Carbonate Reservoirs 

1. Reservoir quality has a direct correlation to primary depositional 
facies. 

 

2. Because of this, the predictability of reservoir distribution, both 
laterally and vertically, may be enhanced by the development of a 
sequence stratigraphic framework. 

 

3. Porosity and permeability (i.e. reservoir quality) is a direct function 
of pore architecture, which again is often tied to primary 
depositional facies and/or position within a sequence stratigraphic 
framework. 

 

4. Detailed characterization of pore architecture should lead to a 
better understanding of the 3-D distribution and connectivity of 
pores – image analysis and CT scans, along with laboratory 
measured sonic velocity, may lend insight into the acoustic 
properties of different reservoir and non-reservoir facies. 

 

5. Modern and ancient analogs may provide critical understanding of 
process, geometry and evolution of carbonate reservoirs. 
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