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Abstract

The Citronelle field in southwest Alabama is the site of a U.S. Department of Energy pilot project on long-term geologic storage of CO, and
the efficacy of CO,-EOR. The target for injection is the Donovan Sand, an assemblage of arkosic fluvial sandstones intercalated with
mudstones within the Lower Cretaceous Rodessa Formation. Following injection in November, 2009, production from updip well Permit 706
increased 20% to 493 bbl/month in 3 months. However, after February, 2010, monthly production decreased by 50% to 250 bbl/month, and it
has not been >300 bbl/month, as of March 2012, despite water-flooding beginning March, 2010. Reservoir rock samples from 6 cored wells
were analyzed via thin-section petrography, bulk geochemistry, and SEM-EDS to model reservoir rock composition. Sand mineralogy is
uniform, but authigenic mineralogy and porosity are heterogeneous. Porosity averages ~2-5%, but locally is up to ~13%. A total of 47 SP well
logs were used to estimate bulk density, from which an estimated porosity curve and porosity distribution map were generated. Paragenesis
indicates early calcite cementation and later calcite cement dissolution, combined with feldspar alteration, generated secondary porosity. In
contrast, authigenic clay is rare, suggesting an open diagenetic system during feldspar alteration. A later generation of anhydrite and calcite
concretions and pyrobitumen occludes both primary and secondary pores. Formation fluids collected during late CO; injection and the
subsequent water-flood show increases in the concentrations of Br, Ca, and Fe, along with pH decreases for most wells. Saturation indices for
minerals in the reservoir rock do not indicate that mineral-dissolution reactions could cause the observed element-concentration trends. Instead,
ion exchange reactions between H', sourced from carbonic acid generated by injected CO,, and cations on the surfaces of reservoir minerals is
likely to be occurring. A simplified TOUGHREACT model of fluid flow was unable to simulate the observed breakthrough times for CO; in
any of the observation wells, suggesting the primary fluid transport pathway may be fracture-controlled; thus, fluids may interact with minerals
of non-porous lithologies or may generate redistributional porosity/mineral trapping in calcite-cemented zones. Iron fouling or possibly
interactions between calcite and acidic formation fluid may have caused observed lowered injectivity during water-flooding.
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Presenter’s notes: Our study is focused on the Donovan sand of the Rodessa Formation shown here. It is a subsurface unit of the AL coastal plain
succession that formed in a Cretaceous marginal marine environment. The Rodessa Formation is the major reservoir unit of the Citronelle field located
on the crest of the Citronelle dome, a giant salt-cored anticline with 4-way closure. There the Rodessa Formation has produced nearly 170 million
barrels from ~524 wells and recovered about one-third of the oil in place The reservoir is sealed by the regionally extensive and thick Ferry Lake
Anhydrite. Donovan pay interval, ~200 feet thick, contains 10’s of productive sand bodies.
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Presenter’s notes: Citronelle Field has been in water flood since 1961. 63% of oil production was produced prior to 1973.



CO,-EOR Project:
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Presenter’s notes: DOE-sponsored project has been testing CO,-EOR and potential storage in the Citronelle field.
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= Loss in production from Permit 1209/B-19-11
= Loss of injectivity to Permit 3232/B-19-10
= Injectivity to water decreased from ~140 to
20 bbl/day in the upper sand but remained
approximately the same at 31-39 bbl
water/day in the lower sand 0o 2

Presenter’s notes: Less-than-hoped-for, but still considered moderately successful as production decline appears to be flattening and holding steady after
post-CO, waterflood.
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Presenter’s notes: The goal of our project is to identify potential for interaction between pore fluids and reservoir rock. Injection of supercritical (sc) CO,
forms a plume and CO, of that plume will not directly interact with rock-matrix minerals. However, lab studies of CO, injection show that connate
fluids will be largely flushed from the pore network, but thin films and droplets of water can remain, and CO, could dissolve in that water and drive

down pH of pore fluids.



Donovan Sandstone Lithofacies:
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Donovan Sandstone Lithofacies
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Homogeneous
sandstone composition;

Heterogeneous porosity.

development

Pore Perimeter Versus Depth: Permit 3232 Injection Well
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Diagenetic Evolution:
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Feldspar stablllty in compacted sandstone:
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Feldspar

dissolution

— Organic complexing of
A" ions

— Acidic formation fluids

— High fluid flux
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Rutile after Ilmenite:
evidence for acidic pore water
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Late-stage
concretions

Anhydrite and calcite:
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* Sulfur sourced from early-charge
fluids induces switch to anhydrite mset
precipitation.




Late-stage
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Degraded o1l/
pyrobitumen now
occludes some of the
original-charged
porosity & isolates
reactive mineral
surfaces

— Prevented further
cementation




SUMMARY: Heterogeneity




SUMMARY: Pore system
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SUMMARY: paleo-fluid composition




SUMMARY: implications
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