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Abstract 
 
Exploration for unconventional and conventional hydrocarbons is experiencing a boom in older, onshore basins where seismic 
data is commonly sparse. In Australia, large onshore Proterozoic to Mesozoic basins host multiple working petroleum systems, 
potentially huge volumes of gas and oil, and have been affected by many igneous events. In onshore South America, the 
interior Paleozoic basins feature Triassic and younger igneous events that affected generation timing, reservoir quality, 
preservation potential and migration.  
 
Regional 2D seismic is used to interpret the location, depth and thickness of igneous rocks that have intruded into source-
reservoir systems. Seismic facies analysis is important for assessing lithofacies variations where interbedded volcanics are 
present. In the Jurassic-Cretaceous Otway Basin, seismic interpretation helps distinguish synrift flow-basalts from lacustrine 
shale source intervals.  
 
In the greater McArthur Basin in northern Australia, dolerite sills have been intruded directly into the main marine source rock 
and above and beneath the main conventional reservoir. Similarly, in onshore South America (eg. Solimões, Amazonas basins) 
Mesozoic sills and dykes have been intruded directly into the Paleozoic petroleum systems elements and provide the critical 
moment for these systems.  
 
Basalt flows and diabase sills are commonly able to be mapped on the seismic data but it is more difficult to interpret dykes on 
seismic data alone. Igneous units commonly exhibit high seismic reflection amplitudes compared to surrounding basin units. 

mailto:akrassay@frogtech.com.au�


Seismic interpretation of the character and type of the igneous units is important for identifying the likely location of igneous 
feeder systems and the possible extent of the igneous systems.  
 
Combining seismic and potential field interpretations provides many benefits. Firstly, potential field data commonly cover a 
greater area than seismic grids and allow an interpretation to be expanded across an entire basin to rapidly assess prospectivity 
and volcanic risk. Secondly, high resolution magnetic and gravity data can help distinguish subtle igneous features such as 
dyke trends and igneous centres (igneous complexes, feeder systems) that may be obscured on seismic. Thirdly, the correlation 
of seismic and wells to potential field data is critical for mapping basement depth, and composition and interpreting deep-
seated fault control on igneous bodies and the role of basement heat flow for basin modeling. 
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Presenter’s Notes: First case study is an old, onshore Proterozoic basin where unconventionals (mostly shale gas) is the priority. This area is 
affected by two major thermal events with thick dolerite sills and dykes followed by flood basalt development. Second case is an offshore Mesozoic 
basin where conventional exploration is the priority. This area is heavily affected by Triassic-Jurassic and older intrusives and a wide range of 
Mesozoic extrusive and volcaniclastic igneous units. In both cases, the main seismic datasets are 2D and 3D is either unavailable or only covers small 
areas – The talk aims to show the importance and versatility of combining potential field geophysical analysis with traditional seismic- and well-
based basin analysis  
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Presenter’s Notes: Two major, distinct seismic anomalies. Seismic character = v high amplitude, generally flat, parallel continuous reflections. Note 
the mild post intrusion deformation. Also, note the absence of apparent feeders/dykes, forced folds, saucer shapes, and lack of transgression of the 
seismic events – they seem to be remarkably continuous and stratiform. It appears that the dolerites have preferentially intruded the finest-grained, 
uniform mudstones sequences – presumably, they are exploiting competency contrasts within the stratigraphic section. 
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Presenter’s Notes:  

• Note that the Cambrian flood basalts form an overlying igneous blanket to much of the area but had little impact on petroleum systems. 
• The older igneous intrusives however have had a significant effect on petroleum systems locally and the intrusives are widely distributed 
• Note how the 1280 Ma dolerites have preferentially intruded 3 main stratigraphic intervals: 

• The Velkerri Formation (source quality risk) 
• The Bessie Creek Sandstone (reservoir quality risk) 
• The underlying Corcoran Formation (low risk as this is considered a non-source interval) 
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Presenter’s Notes:  

• The model profile (top right) shows the same positive and negative pair of anomalies associated with the flat “sill” body.  The observed 
magnetic data is much noisier than the model data due to local variations in the Kalkarindji basalt. Presenter’s Notes continued on next page 
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• The shallow near surface bodies represent the Kalkarindji basalt disrupted by faults and/or erosion and the deeper larger bodies represent the 
Derim Derim sills. The depths to the top of the sills are approximate only.  The depth can be varied along with the susceptibility of the bodies.  
The possible depth range can be tested with additional modelling. 

• The theoretical model of the flat magnetic bodies (i.e. possible sills) highlights the pair of positive and negative anomalies that occur over the 
edges of the flat bodies.  The edges of the bodies are the main features that are highlighted in the magnetic data.  The colour of the model 
bodies (top right) indicate the relative susceptibility with red highest, yellow moderate and green lowest.  The high susceptibility red bodies 
near surface create the dominant anomalies in the calculated magnetic response (lower left).  The yellow body is less magnetic and slightly 
deeper and the resulting anomalies have lower amplitude and longer wavelength. Note that both of the high susceptibility red bodies show a 
strong anomaly along their edges, i.e. we still “see” evidence of the lower body.   

 
Theoretical model used to better understand and interpret real data. Magnetic response generated from the theoretical model bodies.  Note the 
positive anomaly on the northern edge and the negative anomaly along the southern edge of each sill body.  The theoretical model was set up to 
mimic the main bodies in the Gorrie sub-basin.   
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Presenter’s Notes:  
Left: Observed magnetic data in the Gorrie Sub-basin northwest of the Sever 1 well and seismic line. Note the positive anomaly on the northern edge 
and the negative anomaly along the southern edge of the irregularly shaped sill outlined in yellow.  
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Presenter’s Notes:  
2nd image is an RTP_TernaryTiltMsAgc filter 
Derim Derim Dolerite 

• Sills up to 100m thick and dykes 
• 1324 ± 4 Ma age from Kimberley region (J. Claoue-Long, written pers. comm., 2005 quoted by Goldberg, 2010) 
• 1280 Ma age from this region  
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Presenter’s Notes: 
Main Igneous events are associated with: 

1. Permo-Carboniferous extension 
2. Early-mid Jurassic extension 

There are to less voluminous and extensive peaks in igneous activity during: 
1. Triassic compression and partial basin inversion 
2. Minor volcanism during the Aptian (far-field effects?) 
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Chaotic, discontinuous, high amplitude, low frequency reflections at depth → early rift magmatism? 
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Case 1
• Large deep old

Conclusions
• Large, deep, old 

basins under cover
• Sparse 2D seismic
• Few wells

M lti l k

 Potential field data & interpretation are critical for sparse 
data regions and allow rapid assessment

 Even in mature basins with good seismic coverage• Multiple source rocks
• Thick dolerite sills & 

flood basalts

 Even in mature basins with good seismic coverage 
magnetics & gravity data are useful:
 Depth, extent, thickness of igneous bodies

• Key Igneous risk = 
source overmaturity

 Intrusives vs extrusives
 Testing seismic facies models

 Potential field analysis can help avoid exploration pitfalls: Potential field analysis can help avoid exploration pitfalls:

 400 m of basalt and no reservoir !
 Map and predict areas of igneous risk to pet. sys.p p g p y

 Seismic, well AND potential field interpretation are 
complementary and best used in an integrated approach
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