#### CCUS – Opportunities to Utilize Anthropogenic CO<sub>2</sub> for Enhanced Oil Recovery and CO<sub>2</sub> Storage\*

#### Steven M. Carpenter<sup>1</sup>

Search and Discovery Article #80269 (2012)\*\*
Posted October 22, 2012

#### **Abstract**

A study was completed to assess the global potential for geological storage of CO<sub>2</sub> in shale and coal formations and the impact of gas production from shales on CO<sub>2</sub> storage capacity in underlying deep saline aquifers due to potentially compromising cap rock integrity. The study evaluated the following major tasks:

- Global status of hydrocarbon production from shales and CBM and potential effects on CO<sub>2</sub> storage, both in the producing shales/coals themselves and underlying hydrocarbon reservoirs and/or deep saline formations.
- Current status of research into geological storage of CO<sub>2</sub> in shales and coals.
- Potential nature and rate of trapping processes; mechanisms of storing CO<sub>2</sub>.
- CO<sub>2</sub> injectivity into shales and coals, with reference to industry fracturing practices.
- Containment issues arising from shale fracturing, both for shales as a storage medium, and in terms of cap rock integrity for underlying storage units, particularly deep saline aquifers.
- Methods for assessing storage capacities for CO<sub>2</sub> storage in shales and coals.
- High-level mapping and assessment of theoretical/effective capacities.

<sup>\*</sup>Adapted from oral presentation given at AAPG Eastern Section meeting, Cleveland, Ohio, 22-26 September 2012

<sup>\*\*</sup>AAPG©2012 Serial rights given by author. For all other rights contact author directly.

<sup>&</sup>lt;sup>1</sup>Advanced Resources International, Arlington, VA (<u>scarpenter@adv-res.com</u>)

• Potential economic implications of CO<sub>2</sub> storage in shales and coals.

This article will present an overview of the study, its development, and significant findings.







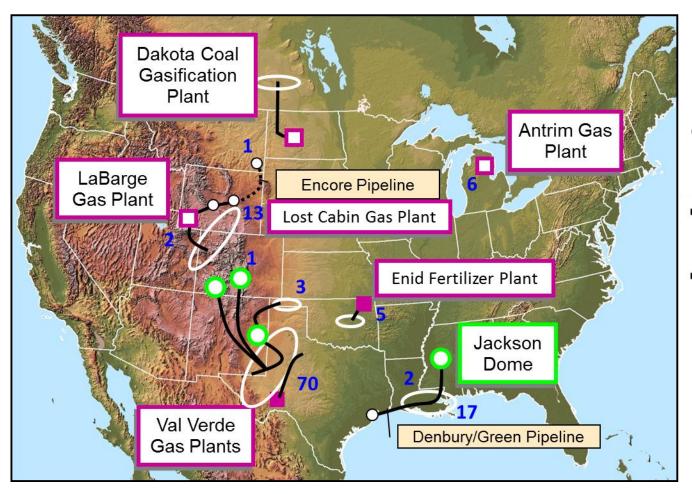
## CCUS – Opportunities to Utilize Anthropogenic CO2 for Enhanced Oil Recovery and CO2 Storage

Eastern Section - AAPG

Session X - Carbon Capture & Sequestration II

Prepared By:

Steven M. Carpenter, Vice, President
ADVANCED RESOURCES INTERNATIONAL, INC.
Arlington, VA




#### **Presentation Topics**

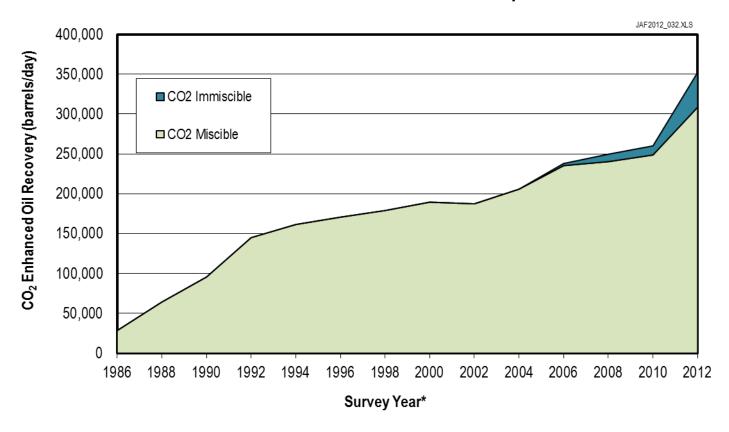
- What is the potential for CO<sub>2</sub>-EOR in the U.S. and globally?
- How much CO<sub>2</sub> storage could result from CO<sub>2</sub>-EOR?
- Who will most benefit from pursuing CCUS with CO<sub>2</sub>-EOR?
- What changes can help more rapid CCUS/CO<sub>2</sub>-EOR deployment?
- What can slow it down?



## U.S. CO<sub>2</sub>-EOR Activity – Oil Fields & CO<sub>2</sub> Sources



120


Ц

- 120 CO<sub>2</sub>-EOR projects provide 352,000 bbl/day
- New CO<sub>2</sub> pipelines are expanding CO<sub>2</sub>-EOR to new oil fields and basins.
  - 320 mile Green Pipeline
  - 226 mile Encore Pipeline



### Crude Oil Production from CO<sub>2</sub>-EOR

Nearly doubled during the past 5 years In 2012, 6% of total U.S. crude oil production.



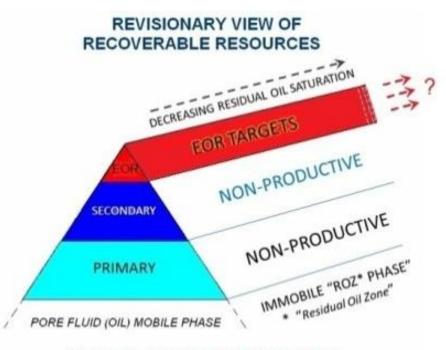


# Significant Volumes of CO<sub>2</sub> Are Already Being Injected for EOR in the U.S.

| Location of                          | CO Course Time and Leasting                                              | CO <sub>2</sub> Supply (MMcfd) |               |
|--------------------------------------|--------------------------------------------------------------------------|--------------------------------|---------------|
| EOR / Storage                        | CO <sub>2</sub> Source Type and Location                                 | Geologic                       | Anthropogenic |
| Texas, New Mexico,<br>Oklahoma, Utah | Geologic (Colorado, New Mexico) Gas Processing, Fertilizer Plant (Texas) | 1,600                          | 190           |
| Colorado, Wyoming                    | Gas Processing (Wyoming)                                                 | -                              | 300           |
| Mississippi                          | Geologic (Mississippi)                                                   |                                | -             |
| Michigan                             | Gas Processing (Michigan)                                                |                                | 10            |
| Oklahoma                             | Fertilizer Plant (Oklahoma)                                              | -                              | 35            |
| Saskatchewan                         | Coal Gasification (North Dakota)                                         |                                | 150           |
| TOTAL (MMcfd)                        |                                                                          | 2,530                          | 685           |
| TOTAL (MMt per year)                 |                                                                          | 49                             | 13            |

<sup>\*</sup> Source: Advanced Resources International, 2012

<sup>\*\*</sup>MMcfd of CO<sub>2</sub> can be converted to million metric tons per year by first multiplying by 365 (days per year) and then dividing by 18.9 \* 10<sup>3</sup> (Mcf per metric ton)




### Just How Big are the EOR Targets?

#### CONVENTIONAL VIEW OF RECOVERABLE OIL RESOURCES



**TERNARY VIEW** 



"QUATERNARY" VIEW





## Oil Recovery and CO<sub>2</sub> Storage From "Next Generation" CO<sub>2</sub>-EOR Technology\*

| Reservoir Setting                  | Oil Recovery***<br>(Billion Barrels) |    | CO <sub>2</sub> Demand/Storage***<br>(Billion Metric Tons) |            |  |
|------------------------------------|--------------------------------------|----|------------------------------------------------------------|------------|--|
|                                    | Technical Economic**                 |    | Technical                                                  | Economic** |  |
| L-48 Onshore                       | 104                                  | 60 | 32                                                         | 17         |  |
| L-48 Offshore/Alaska               | 15                                   | 7  | 6                                                          | 3          |  |
| Near-Miscible CO <sub>2</sub> -EOR | 1                                    | *  | 1                                                          | *          |  |
| ROZ (below fields)****             | 16 13                                |    | 7                                                          | 5          |  |
| Sub-Total                          | 136                                  | 80 | 46                                                         | 25         |  |
| Additional From<br>ROZ "Fairways"  | 40                                   | 20 | 16                                                         | 8          |  |

<sup>\*</sup>The values for economically recoverable oil and economic CO<sub>2</sub> demand (storage) represent an update to the numbers in the NETL/ARI report "Improving Domestic Energy Security and Lowering CO<sub>2</sub> Emissions with "Next Generation" CO<sub>2</sub>-Enhanced Oil Recovery (CO<sub>2</sub>-EOR) (June 1, 2011).

International, Inc.

<sup>\*\*</sup>At \$85 per barrel oil price and \$40 per metric ton CO<sub>2</sub> market price with ROR of 20% (before tax).

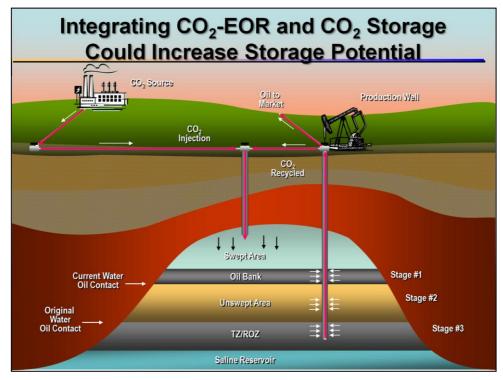
<sup>\*\*\*</sup>Includes 2.6 billion barrels already being produced or being developed with miscible CO<sub>2</sub>-EOR and 2,300 million metric tons of CO<sub>2</sub> from natural sources and gas processing plants.

<sup>\*\*\*\*</sup> ROZ resources below existing oilfields in three basins; economics of ROZ resources are preliminary.

### Oil Recovery and CO<sub>2</sub> Storage Potential in World's Oil Basins\*

•

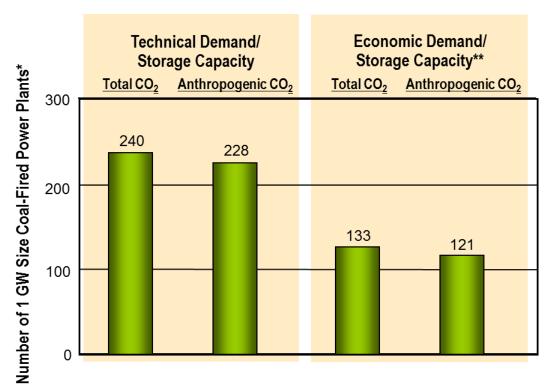
| Region                  | CO <sub>2</sub> -EOR Oil Recovery<br>("Next Generation" CO <sub>2</sub> -EOR) | CO₂ Storage Capacity<br>("Next Generation" CO₂-EOR) |  |
|-------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------|--|
|                         | (Billion Barrels)                                                             | (Billion Metric Tons)                               |  |
| 1. Asia Pacific         | 47                                                                            | 10                                                  |  |
| 2. C. & S. America      | 93                                                                            | 21                                                  |  |
| 3. Europe               | 41                                                                            | 10                                                  |  |
| 4. FSU                  | 232                                                                           | 50                                                  |  |
| 5. M. East/N. Africa    | 595                                                                           | 142                                                 |  |
| 6. NA/Other             | 38                                                                            | 11                                                  |  |
| 7. NA/U.S.**            | 177                                                                           | 41                                                  |  |
| 8. South Asia           | •                                                                             | -                                                   |  |
| 9. S. Africa/Antarctica | 74                                                                            | 16                                                  |  |
| TOTAL                   | 1,296                                                                         | 301                                                 |  |


<sup>\*</sup> Includes potential from discovered and undiscovered fields, but not estimated future growth in discovered fields





Presenter's notes: After screening 54 world basins for CO<sub>2</sub>-EOR potential and deleting the basins and oil fields that are not technically favorable for miscible CO<sub>2</sub>-EOR


we estimate that 470 to 880 billion barrels could be recovered from fields favorable for miscible CO<sub>2</sub>-EOR, and depending on the extent to which CO<sub>2</sub>-EOR is expanded and applied to both smaller fields and in fields that remain to be discovered.



Presenter's notes: Alternative Approaches to CO<sub>2</sub> Storage with CO<sub>2</sub>-EOR can increase storage potential

- Inject CO<sub>2</sub> earlier in project life
- Inject CO<sub>2</sub> longer
- Continuously inject CO<sub>2</sub> instead of alternating with water via WAG
- Inject and CO<sub>2</sub> into the residual oil/transition zone
- Inject CO<sub>2</sub> into other geologic horizons accessible from same surface infrastructure used for CO<sub>2</sub>-EOR
- Produce residual water to "make more room" for CO<sub>2</sub>.

## Demand for CO<sub>2</sub>: Number of 1 GW Size Coal-Fired Power Plants



| *Assuming 7 MMmt/yr of CO <sub>2</sub> emissions, 90% capture and 30 years of operations per 1 GW of generating capacity. |
|---------------------------------------------------------------------------------------------------------------------------|
| **At an oil price of \$85/B, a $CO_2$ market price of \$40/mt and a 20% ROR, before.                                      |
| Source: Advanced Resources Int'l (2011).                                                                                  |

| Reservoir<br>Setting              | Number of<br>1GW Size Coal-Fired<br>Power Plants*** |           |  |
|-----------------------------------|-----------------------------------------------------|-----------|--|
|                                   | Technical                                           | Economic* |  |
| L-48 Onshore                      | 170                                                 | 90        |  |
| L-48 Offshore/Alaska              | 31                                                  | 14        |  |
| Near-Miscible CO2-<br>EOR         | 5                                                   | 1         |  |
| ROZ**                             | 34                                                  | 28        |  |
| Sub-Total                         | 240                                                 | 133       |  |
| Additional From<br>ROZ "Fairways" | 86                                                  | 43        |  |

<sup>\*</sup>At \$85 per barrel oil price and \$40 per metric ton CO<sub>2</sub> market price with ROR of 20% (before tax).

<sup>\*\*\*</sup>Assuming 7 MMmt/yr of CO<sub>2</sub> emissions, 90% capture and 30 years of operation per 1 GW of generating capacity; the U.S. currently has approximately 309 GW of coal-fired power plant capacity.



<sup>\*\*</sup> ROZ resources below existing oilfields in three basins; economics of ROZ resources are preliminary.

### Demand for CO<sub>2</sub> by the EOR Industry

- The economic demand from CO<sub>2</sub>-EOR 25 to 32 Gt of CO<sub>2</sub>
- Current/planned CO<sub>2</sub> supplies can only provide 4 to 7 Gt
  - Natural sources 2.1 to 2.6 Gt
  - Gas processing 0.7 to 3.0 Gt (high end includes LaBarge reserves)
  - Other industrial 1.1 Gt
- CO<sub>2</sub>-EOR can accelerate capture & storage of anthropogenic CO<sub>2</sub>
  - The Weyburn integrated CO<sub>2</sub>-EOR and CO<sub>2</sub> storage project is the existing "poster child".
  - Summit's Texas Clean Energy IPCC Project, with 2.5 million metric tons per year of captured CO<sub>2</sub> serves as the new "model" for CCUS.

International, Inc.

A large-scale national pipeline network is needed to link the Ohio Valley & Southeast U.S. captured CO<sub>2</sub> emissions with Mid-Continent, Rockies and West Texas oil fields

#### Linking CO<sub>2</sub> Supplies with CO<sub>2</sub>-EOR **Demand**

The primary EOR markets for excess CO<sub>2</sub> supplies from the Ohio Valley, South Atlantic and Mid-Continent is East/West Texas and Oklahoma.

Mountain Central North 0.2 Central ND MN MT ME England OR SD 0.6 NH MA 2.0 WY 4.2 CA NE NV 6.3 Pacific UT 3.7 CO Middle & MO 6 Bcfd 0.2 8 Bcfd tlantic 37 DE 0.3 AZ NM East South C MD 0.2 OK 3.6 South Atlantic TX LI13 Bcfd 8.0 14.2 19 Bcfd 4.3 South Central Jackson Dome

West

North

East

0

**Advanced Resources** 

International, Inc.

| Region             | Captured CO2<br>Supplies*<br>(BMt) | CO2<br>Demand<br>(BMt) | Supply<br>(BMt) | Net CO2<br>Demand<br>(BMt) |
|--------------------|------------------------------------|------------------------|-----------------|----------------------------|
| New England        | 0.2                                | -                      | 0.2             |                            |
| Middle Atlantic    | 2.3                                | 0.2                    | 2.1             |                            |
| South Atlantic     | 7.4                                | 0.2                    | 7.2             |                            |
| East North Central | 4.2                                | 0.6                    | 3.6             |                            |
| West North Central | 6.3                                | 2.0                    | 4.3             |                            |
| East South Central | 3.6                                | 0.2                    | 3.3             |                            |
| West South Central | 4.3                                | 14.2                   |                 | 9.9                        |
| Mountain           | 3.7                                | 3.7                    |                 |                            |
| Pacific            | 0.3                                | 4.2                    |                 | 3.8                        |
| Total              | 32.2                               | 25.3                   | 20.8            | 13.7                       |
| ROZ "Fairways"     |                                    | 8.0                    |                 | 8.0                        |

Pacific

4.2 0.3

CO<sub>2</sub> Demand by EOR (Bmt)

Captured CO<sub>2</sub> Emissions (Bmt)

Resources Int'l (2011) CO2 demand.



Sources: EIA Annual Energy Outlook 2011 for CO2 emissions; NETL/Advanced

# Distribution of Economic Value of Incremental Oil Production from CO<sub>2</sub>-EOR

|       |                           |              | Federal/ | Power       | Private   |              |
|-------|---------------------------|--------------|----------|-------------|-----------|--------------|
| Notes |                           | Oil Industry | State    | Plant/Other | Royalties | U.S. Economy |
| 1     | Domestic Oil Price (\$/B) | \$85.00      |          |             |           |              |
| 2     | Less: Royalties           | (\$14.90)    | \$2.50   |             | \$12.40   |              |
| 3     | Production Taxes          | (\$3.50)     | \$4.10   |             | (\$0.60)  |              |
| 4     | CO2 Purchase Costs        | (\$14.00)    |          | \$12.60     |           | \$1.40       |
| 5     | CO2 Recycle Costs         | (\$9.60)     |          |             |           | \$9.60       |
| 6     | O&M/G&A Costs             | (\$9.00)     |          |             |           | \$9.00       |
| 7     | CAPEX                     | (\$6.00)     |          |             |           | \$6.00       |
|       | Total Costs               | (\$57.00)    |          | -           |           |              |
|       | Net Cash Margin           | \$28.00      | \$6.60   | \$12.60     | \$11.80   | \$26.00      |
| 8     | Income Taxes              | (\$9.80)     | \$13.90  | -           | (\$4.10)  | -            |
|       | Net Income (\$/B)         | \$18.20      | \$20.50  | -           | \$7.70    |              |

JAF2011\_065.XLS

Notes: (1.) Assumes \$85 per barrel of oil; (2.) Royalties are 17.5%; 1 of 6 barrels produced are from federal and state lands; (3.) Production and ad valorem taxes of 5%, from FRS data; (4.)  $CO_2$  market price of \$40/tonne, including transport; 0.35 tonne of purchased  $CO_2$  per barrel of oil; CCS would meet about 90% of  $CO_2$  demand; (5.)  $CO_2$  recycle cost of \$16/tonne; 0.6 tonnes of recycled  $CO_2$  per barrel of oil; (6.) O&M/G&A costs from ARI  $CO_2$ -EOR cost models; (7.) CAPEX from ARI  $CO_2$ -EOR cost models; (8.) Combined Federal and state income taxes of 35%, from FRS data.



## Distribution of Benefits from "Next Generation" CO<sub>2</sub>-EOR

|    |                            |                                            | Revenues   |              |  |
|----|----------------------------|--------------------------------------------|------------|--------------|--|
|    | Revenue Recipient          | Value Chain Function                       | Per Barrel | TOTAL        |  |
|    |                            |                                            | (\$)       | (\$ billion) |  |
| 1. | Federal/State Treasuries   | Royalties/Severance/Income Taxes           | \$20.50    | \$1,640      |  |
| 2. | Power/Industrial Companies | Sale of Captured CO <sub>2</sub> Emissions | \$12.60    | \$1,010      |  |
| 3. | Other                      | Private Royalties                          | \$7.70     | \$620        |  |
| 4. | Oil Industry               | Return of/on Capital                       | \$18.20    | \$1,450      |  |
| 5. | U.S. Economy               | Services, Materials and Sales              | \$26.00    | \$2,080      |  |
|    |                            | Total                                      | \$85.00    | \$6,800      |  |

JAF2011\_065.XLS



## While CCS Needs the U to make CCUS, CO<sub>2</sub>-EOR Also Needs the CO<sub>2</sub> from CCS

- Growth in production from CO<sub>2</sub>-EOR is now limited by the availability of reliable, affordable CO<sub>2</sub>.
  - There are more prospective CO<sub>2</sub>-EOR projects than there is CO<sub>2</sub> to supply them
- If increased volumes of CO<sub>2</sub> do not result from CCUS, then these benefits from CO<sub>2</sub>-EOR will not be realized.
- Thus, not only does CCUS need CO<sub>2</sub>-EOR to ensure viability of CCUS, but CO<sub>2</sub>-EOR needs CCUS to ensure adequate CO<sub>2</sub> to facilitate CO<sub>2</sub>-EOR growth.
- This will become even more apparent as potential even more new targets for CO<sub>2</sub>-EOR become recognized.

International, Inc.

#### Current CCS Activities and Project Plans are Dominated by CCUS Applications

16

- Of the 9 planned DOE CCS Demonstration Projects, 7 propose to utilize CO<sub>2</sub>-EOR
- Worldwide, the Global CCS Institute reports 77 largescale integrated projects (LSIPs) at various stages of the asset life cycle
  - Of which 34 (44%) are targeted for EOR.
- 8 of these projects are operating, and 4 are in the execution phase of the project life cycle
  - 5 of the 8 operating projects and 3 of 4 in execution are injecting CO<sub>2</sub> for EOR



Presenter's notes: To overcome these barriers, in addition to  $> 120 \, \text{CO}_2$ -EOR projects being pursued around the world, the Global CCS Institute reports 77 large-scale integrated research and demonstration projects (LSIPs) at various stages of the asset life cycle

Include 8 operating projects and 4 projects in the execution phase of the project life cycle

Vast majority in developed countries

Of the 77 LSIPs, 34 (44%) are targeted for EOR applications. 5 of the 8 LSIPs and 3 of the 4 in execution are injecting CO<sub>2</sub> for EOR Outside of North America, the CCSI identified projects underway in China, Netherlands, UAE

#### Significant Challenges Still Remain

- Value proposition not always apparent
  - More challenging without a price on carbon
  - Including in Clean Development Mechanism <u>may</u> help
- Old fields require major infrastructure; cost of system recapitalization is significant
  - US Permian basin projects support ~\$10-\$25/tonne delivered at injection pressure because they leverage infrastructure.
  - Offshore projects challenged even with "free CO<sub>2</sub>," storage credits and high oil prices.
- The number of companies with CO<sub>2</sub>-EOR experience is limited; BUT GROWING



### Significant Challenges Still Remain (cont.)

- Balancing EOR field CO<sub>2</sub> requirements with CO<sub>2</sub> supplies creates challenges, at least initially
  - Requires new collaborations between entities that have not commonly collaborated before
  - Understanding project life-cycle energy/carbon balance
- Regulatory frameworks evolving regarding the transition of EOR to storage, but not there yet
  - Issues include long term monitoring requirements, pipeline siting and access, long-term liability, and pore space rights
- EVERY STORAGE RESERVOIR IS UNIQUE!
  - No "one size fits all" solutions



#### **Concluding Thoughts and Observations**

- 1. CO<sub>2</sub>-EOR Offers Large CO<sub>2</sub> Storage Capacity Potential. CO<sub>2</sub>-EOR in oil fields can accommodate a major portion of the CO<sub>2</sub> captured from industrial facilities for the next 30 years.
- 2. CO<sub>2</sub> is Stored with CO<sub>2</sub>-EOR. The amount stored depends on the priority placed on maximizing/optimizing storage.
- 3. CCS Benefits from CO<sub>2</sub>-EOR. The revenues (or cost reduction) from sale of CO<sub>2</sub> to EOR helps CCS economics, overcomes some barriers, while producing oil with a lower CO<sub>2</sub> emissions "footprint."
- **4.** CO<sub>2</sub>-EOR Needs CCUS. Large-scale implementation of CO<sub>2</sub>-EOR is dependent on CO<sub>2</sub> supplies from industrial sources.
- 5. Both CCUS and CO<sub>2</sub>-EOR Still Need Supportive Policies and Actions. Focused R&D investment, supportive policies and prebuilt CO<sub>2</sub> pipelines can greatly accelerate the integrated use of CO<sub>2</sub>-EOR and CCUS.

Advanced Resources International, Inc.

### Thank you!



#### **Office Locations**

Washington, DC 4501 Fairfax Drive Suite 910 Arlington, VA 22203 Phone: (703) 528-8420 Fax: (703) 528-0439

Houston, TX 11490 Westheimer Suite 520 Houston, TX 77042 Phone: (281) 558-6569 Fax: (281) 558-9202

Knoxville, TN 603 W. Main Street Suite 906 Knoxville, TN 37902 Phone: (865) 541-4690 Fax: (865) 541-4688

Cincinnati, OH 1282 Secretariat Court Batavia, OH 45103 Phone: (513) 460-0360 scarpenter@adv-res.com

