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Abstract 

 
The Lower Cretaceous Pearsall Formation in South Texas contains three calcareous, terrigenous mudstone intervals that are productive 
shale-gas reservoirs or that have the potential to be shale-gas reservoirs. The intervals are the Pine Island Shale, Lower Bexar Shale, and 
Upper Bexar Shale members. Each member is associated with the OAE-1 time interval, during which the Pearsall distal steepened ramp was 
transgressed and flooded. The Pine Island Shale Member contains the OAE-1A, the Lower Bexar Shale Member contains a regional OAE, 
and the Upper Bexar Shale Member contains OAE-1B. Secular carbon isotope curves record these OAEs and allow their correlation, not 
only within the GOM, but also worldwide. In the outer-ramp setting during OAEs, sedimentation was dominated by calcareous siliceous 
mudstone and argillaceous lime wackestone. Dysoxic to anoxic bottom conditions existed, favoring the preservation of organic matter. TOC 
content increases in the offshore direction, reaching up to an average value of 1.8% (high single value of 2.8%) near the paleo-Sligo shelf 
edge. The reservoir may be composed of a dual pore network of open-mode, tectonic-related fractures and matrix interparticle and 
intraparticle nano- to micropores. Matrix porosity ranges between 4 and 8%, and matrix permeability ranges between 4 and 70 nd. The 
Pearsall outer-ramp facies belt throughout the GOM is expected to have environmental conditions similar to those in South Texas and 
therefore is expected to be a prospective shale-gas system. The limiting factor will be depth of burial and associated economics.  
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Introduction
 The Pearsall Formation was a mixed 

system deposited during the Aptian age 

of the Cretaceous

 Paleogeography, sea-level changes, 

and environmental events (Oceanic 

Anoxic Events, OAE’s) played a role in 

its deposition

 The Pearsall Shale has the TOC and 

porosity necessary to be a shale-gas 

system
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 ~185 well logs (SP and resistivity)

 44 cores (mostly in the updip area)

 Carbon isotope profiles

and other geochemical data
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2nd 3rd

(2nd order interpretation by Phelps, in press)

 Due to depositional 

setting on a distally 

steepened ramp, 

lithostratigraphy 

reflects sequence 

stratigraphy

 5 third-order cycles 

were identified to be 

correlative basin-wide.
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Sequences in the Tenneco #1 Ney 
Lith.    SP Res. 2nd 3rd HFC Lith.   Sp Res.    2nd 3rd HFC

 Complete Pearsall 

cored section from 

Sligo to the Lower 

Glen Rose.

 Five 3rd order 

cycles identified in 

the Pearsall.

 Numerous HFC 

seen but time 

scales and 

correlatability are 

uncertain. 
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Pearsall Formation Stratigraphic Section, OAE’s 
and Potential Productive Zones
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The Carbon Isotope Record and OAEs

 Carbon isotope curves are thought to reflect changes in 

global carbon cycling (Kump and Arthur, 1999).

 Decreases in the δ13C ratio indicate the input of 

isotopically light carbon through a variety of processes, 

including volcanic and hydrothermal activity associated 

with increased seafloor spreading  (Jones and 

Jenkyns, 2001).

 Increases the δ13C ratio indicate removal of light 12C 

from the system through the sequestration of organic 

matter.  This process is TOC preservation (Jones and 

Jenkyns, 2001).



1.

2.

3.

4.

δ13C Correlations Across the Shelf
1.  Santa Rosa Canyon, Mexico

2.  TXCO #1-68 Comanche Ranch, 

Maverick County 

3.  Tenneco #1 Ney, Frio County

4.  Magnolia #1 Mercer, Caldwell 

County
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Lower Bexar Reservoir Facies

TXCO Comanche

Ranch 8449.5’
1 inch

Winnowed non-bioturbated calcite 

silt-bearing terrigenous mudstone

Tidewater 2 Wilson  11,845’
1 inch

Tidewater #2 Wilson 11,813’

100 mm

Weakly laminated to massive calcite 

silt-bearing terrigenous mudstone



Lower Bexar TOC
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Lower Bexar TOC
Lithology    0% 2% 4% 6% Lithology   0%    2%   4% Lithology     0%   2% 4%

TXCO 34-1 Comanche Ranch Skelly 1-A La Salle Tidewater 2 Mabel Wilson



Cow Creek 

argillaceous lime 

wackestone 

Lower Bexar 

mudstone 

Cow Creek clay-rich 
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Pine Island Reservoir Facies

1 inch

Shell #1-R Roessler 15,925’

100 mm

Peloidal terrigenous mudstone

Shell #1-R Roessler 15952.4’

100 mm

Shell #1-R Roessler 15926.5’
1 inch

Peloidal calcareous terrigenous 

mudstone



Pine Island TOC

0.99
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0.69
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0.53 0.32

0.39

0.22
0.55

1.00%

1.50%



Pine Island TOC and Pores

Shell #1-R Roessler

Interparticle pores

500 nm
Humble #47 Pruitt 9,700’

4 mm

Intra-kerogen pores

Shell #1-R Roessler 15934’

Texture  Mineralogy            %TOC

0%    2%    4%



Conclusions

 Paleogeography, sea-level changes, and 

environmental changes contributed to the 

development of a favorable depositional 

environment for shale gas during the Pearsall

 The Pine Island Shale Member and Lower Bexar 

Shale Member both contain porosity and organic-

rich source rock

 These members and the Upper Bexar Shale 

member, deposited under a similar depositional 

regime, warrant further consideration as shale gas 

targets when economics can be improved 
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