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Abstract 

 

Many currently producing shale-gas reservoirs are overmature oil-prone source rocks containing Type I or Type II kerogen. Key 

characterization parameters are: total organic carbon (TOC), maturity level (vitrinite reflectance), mineralogy, thickness, and organic 

matter type (OMT). Recent studies indicate that although organic-rich shale-gas formations may be hundreds of meters in gross thickness 

(and may appear largely homogeneous), the vertical variability in the organic richness and mineralogy can vary on relatively short vertical 

scales (e.g., 10’s centimeters - 1 meter). The vertical heterogeneity observed can be directly tied back to geologic and biotic conditions 

when deposited. The accumulation of organic-rich rocks (ORRs) is a complex function of many interacting processes that can be 

summarized by three main control variables: rate of production, rate of destruction, and rate of dilution. The marine realm includes three 

physiographic settings that accumulate significant organic-matter-rich rocks: constructional shelf margin, platform/ramp, and continental 

slope/basin. In general, the fundamental geologic building block of shale-gas reservoirs is the parasequence, or its equivalent, and 

commonly 10’s to 100’s of parasequences comprise the organic-rich formation whose lateral continuity can be estimated, using techniques 

and models developed for source rocks.  

 

Many geochemical and petrophysical techniques developed to characterize organic-rich source rocks in the oil-generation window 

(Ro=0.5-1.0) can be applied, sometimes with modification, to shale-gas reservoirs that currently exhibit high thermal maturity (Ro=1.1 - 

4.0). Well logs can be used to calculate TOC, porosity, and hydrocarbon saturation, but in clay-rich mudstones, the fundamental definition 

of porosity is complicated by the high surface area of clay minerals (external and sometimes internal), the volume of surface water, and the 

presence of water held by capillary forces in very small pores between silt and clay size mineral grains. Moreover, SEM images of ion-

beam-milled samples reveal a separate nano-porosity system contained within the organic matter, and the gas may be largely contained in 

these organic pores. 

 

The use of high-vertical-resolution standard logs and borehole image logs enhances the interpretation of vertically heterogenous shale-gas 

mailto:Quinn.r.passey@exxonmobil.com


formations. It is important to keep in mind that kerogen occupies a much larger volume percent (vol%) than is indicated by the TOC 

weight percent (wt%); this is because of the low grain density of the organic matter (typically 1.1-1.4 g/cc) compared to that of common 

rock-forming minerals (2.6-2.8 g/cc). Well logs play a critical role in characterizing and quantifying shale-gas resources. 
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Maturity (LOM/Ro) – Type II  
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Stacking Patterns within Mowry Shale 

(After Creaney and Passey, 1993) 
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Correlation of TOC Maxima (and Parasequences) Mowry 
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• Preserved shale samples were used in the studies 

• Parts of same sample were sent to 3-5 different commercial 

laboratories for bulk and grain densities, GRI porosity, GRI 

perm and saturation measurements 
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Comparison of “Reported  
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Key Parameters for Shale Gas 

Sample Evaluation 

• Total Organic Carbon (TOC) wt% 
• Maturity (Ro %) –  
 -Vitrinite Reflectance Equivalent 
 - Biomarkers – maturity indicator 
 - Carbon Isotopes – related to maturity 
• Geochemical parameters (HC type and quality) 
 - Fluid inclusions 
 - Wetness (C2-C5) 
 - API Gravity (tight oil) 
• Total Porosity – crushed rock total porosity method 
• Water Saturation (total) 
• Adsorbed gas volume (scf/ton) 
• Free gas – typically calculated from logs 
• Permeability – steady state flow recommended 
• Microscopy 

 - Thin Sections – optical microscopy 
 - Scanning Electron Microscopy (SEM/EDS) 
 - Focus Ion Beam - SEM 
• Lithology/mineralogy 

 - XRD/XRF 
• Geomechanical Properties (Young’s Modulus, Poisson's ratio) 
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TOC versus Total Porosity  

in Gas-bearing Mudrocks 
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Porosity versus Gas-filled  

Porosity in Shale Gas Reservoir 
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TOC and Sg are Correlated 
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Where is the oil in  

"Shale Oil"? 
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Molecular Sizes and Organic Pores 

(After Momper, 1978) 
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Woodford Shale – 20.9 wt% TOC 
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Transmitted Light (Ro=0.65%) 

 

(Courtesy Mark Rudnicki) 



2012 AAPG Distinguished Lecture  

Porosity Evolution in Organic-rich Rocks 
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Shale Oil (Ro 0.5-1.0) 
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Summary 

• Shale-gas reservoirs are overmature oil-prone source rocks 

• The parasequence is the fundamental building block  of  shale 

gas reservoirs 

• Porosity, TOC, and gas content are all positively correlated 

for shale-gas reservoirs Ro 1-3+) 

• Free gas likely to be largely in organic-matter porosity 

• Gas-filled porosity (BVG) is better characterization term than 

Sg 

• The porosity system for fluids in organic-rich systems evolves 

with increasing maturity and is influenced by matrix lithology 
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For Further Information –  

SPE 131350 




