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Abstract 

 
The Upper Cretaceous Niobrara Formation in the Denver-Julesburg Basin records late Turonian to early Campanian climate and orbital 
cycles and tectonic events.  The third-order transgressive-regressive events of the Niobrara Cyclothem govern the character of the pelagic 
and hemipelagic sedimentation of the formation. During sea-level high stands, the depositional system was dominated by increased biogenic 
productivity and lesser preservation of organic material. In contrast, low stands involved increased terrigenous sediment influx and greater 
preservation of organic material. Mapping sequences that comprise these stratigraphic trends is important to operators currently exploiting 
the Niobrara petroleum system. 
 
We employ a sequence stratigraphic framework for the Niobrara Formation in the Denver-Julesburg Basin, based on log character but 
independent of lithostratigraphy, that reveals the architecture of key depositional packages. Based on detailed correlations using wire-line 
logs from over 2,000 wells, we present a series of isochore maps and cross sections that show 1) stratigraphic thinning that we interpret as 
seafloor topographic features such as subtle submarine channel floors, 2) stratigraphic thickening that we suggest is compensational infilling 
of accommodation space, and 3) the chronology of abrupt shifts in the trends of these depositional features.  We constrain the timing of 
tectonic/geomorphic features revealed in the isochore maps with published cyclostratigraphic analysis, biostratigraphy, and geochronology 
data. 
 
Findings include the following:  1) generally broad shelf deposition during the late Turonian was replaced in the Coniacian by subtle NW-
SE- and E-W-oriented submarine channels, with compensational infilling by younger sequences; 2) the first evidence of paleobathymetric 
highs (e.g., the “Wattenberg High”), and disruption of submarine channel orientations, appears during the middle Santonian (~85-84 Ma), 
and 3) upper Santonian-lower Campanian sequences are dominated by SW-NE-oriented architecture.  
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D-J Niobrara Highstands vs. Lowstands 

6 e.g., Laurin et al. (2004), Jarvis et al. (2006), Locklair and Sageman (2008)  
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the Niobrara of the D-J Basin are apparent: 
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Niobrara Isotopic Ages 
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Isochore Controls:  Paleohighs and Basement Structures 
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First 3rd Order Cyclostratigraphic Package 
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Second 3rd Order Cyclostratigraphic Package 
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Interpretation of Stratigraphic Architecture 

 Possible factors contributing to complexities observed in the D-J Basin Niobrara: 

– Currents and redistribution of pelagic sediments along distal carbonate ramp 

– Areas of higher productivity and accumulation (planktonic blooms, upwellings) 

– Basement uplifts 

– Post-depositional differential compaction  

 

 Stratigraphic thins consistent with bypassed sedimentation, minor disconformity, 

nondepositional unconformity, condensed section, scouring: 

– Benthic currents (e.g., tidal, hyperpycnal, contouritic, or storm event) producing 

channel forms  

– Long-lived basement uplifts forcing disruption of stratigraphic architectural trends 

(i.e., shifted channel forms) 

 

 Stratigraphic thicks consistent with compensational infilling of thins and 

accommodation space provided by previous sequence:  

– Subsequent infilling of submarine channel forms 

– Long-lived stratigraphic thicks involve long-lived accommodation space 
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Sub-interval 2 Con100-Con200 

18 

Libsack 43-27 

API: 0512321838 

Weld Co., Colorado 

GR Res 
MRS 

MRS 

MRS 

MRS 

MRS 100 miles 

Present outcrops and 

counties for reference 

~89.4 Ma – ~88.4 Ma:  Lower Coniacian  General thinning trend towards NE 

 Dominantly uniform sequence thickness:  broad 

carbonate platform/ramp deposition 

 W-E- to NW-SE-oriented stratigraphic 

architecture 

 

 

C.I. = 10 ft 



Sub-interval 3 Con200-Con300 
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~86.3 Ma – ~86.0 Ma:  Lower Santonian  Source-prone interval 

 Dominant NW-SE-oriented stratigraphic 

architecture, similar to previous interval 
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Sub-interval 6 San100-San200 
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disrupted by SW-NE-oriented architecture:  First 

significant uplifts are recorded ~86.0 – ~85.1 Ma 

 Hartville High is evident 

 Stratigraphic thicks are shifted laterally:  forced 

reorganization of depocenters 

 Persistent stratigraphic thicks in southern D-J Basin 

 Interval includes “B Chalk” 
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~85.1 Ma – 84.6 Ma:  Upper Santonian  Increased NW-SE-oriented stratigraphic architecture 

 Several paleohighs (e.g., Wattenberg, Turkey Creek) 

are evident  

 Evidence of stratigraphic thicks compensationally 

infilling accommodation space of previous interval 

 Persistent stratigraphic thicks in southern D-J Basin 

 Interval includes “Upper B Chalk” 

 

C.I. = 10 ft 



Sub-interval 8 San300-Cam50 
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Libsack 43-27 

API: 0512321838 

Weld Co., Colorado 

GR Res 
MRS 

MRS 

MRS 

MRS 

MRS 100 miles 

Present outcrops and 

counties for reference 

84.6 Ma – 83.8 Ma:  Upper Santonian – Low. Campanian  Source-prone interval 

 Pronounced NW-SE-oriented stratigraphic 

architecture, similar to previous intervals 

 Thinning apparent in southern D-J Basin 

 

C.I. = 10 ft 



Sub-interval 9 Cam50-Cam100 

25 

Libsack 43-27 

API: 0512321838 

Weld Co., Colorado 

GR Res 
MRS 

MRS 

MRS 

MRS 

MRS 100 miles 

C.I. = 10 ft 

Present outcrops and 

counties for reference 

83.8 Ma – ~82.8 Ma:  Lower Campanian  Persistent NW-SE-oriented stratigraphic 

architecture, similar to previous intervals 

 Persistent thinning apparent in southern D-J 

Basin 

 Interval includes “A Chalk” 

 



Conclusions 

 Sequence-based stratigraphic mapping, constrained with biostratigraphy 

and isotopic ages, reveals:  

– Complex stratigraphic architecture of the Niobrara Fm of the D-J Basin  

– Evolution and timing of organized bathymetric and structural features  

 

 Observations based on detailed mapping include the following: 

– Generally broad shelf deposition during late Turonian was replaced in 

Coniacian by NW-SE-oriented submarine channel forms and compensational 

infilling by subsequent sequences 

– Abrupt disruption of channel architecture by SW-NE-oriented paleobathymetric 

highs first appears in lower Santonian (~86 Ma)  

– Upper Santonian-lower Campanian sequences are dominated by SW-NE-

oriented architecture consistent with structural (basement) influence 

 

 Subtle Niobrara stratigraphic and architectural trends in the D-J Basin have 

implications for facies distributions in the Niobrara’s source rock intervals 

and tight reservoir intervals 
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