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Abstract

The Brushy Canyon Formation, a predominantly fine-grained turbidite system, was deposited on the slope and basin floor of the late
Paleozoic Delaware Basin. Our project focuses on resolving intra-channel sediment sorting within upper-slope channel deposits, and
comparing these deposits to channel fills on the proximal basin floor.

The depositional facies on the upper slope fall into two broad classes: A) open-channel facies associated with bypass of sediment to
deeper water; and B) channel-filling facies associated with bed aggradation and significant loss of channel relief. Deposits
accumulating during bypass are interpreted to be eddy bars located in bank-attached zones of flow separation. These deposits are
characterized by packages of steeply inclined beds composed of planar-stratified, trough cross-stratified or sub- to super-critically
climbing rippled deposits, with abundant mud drapes (D50=110pm). The channel-filling deposits form thick-bedded, sometimes
gravel-rich, sandstone bodies which are structureless or which possess stratification associated with migrating dunes and intra-channel
barforms (D50=156pum). On the proximal basin floor, the channel-filling sandstones (D50=110um) are dominated by stratification
associated with trains of dunes climbing at sub- to super-critical angles, indicating high rates of deposition from suspension.

Grain-size analyses show that particles in the 200-400um range are common in the channel-filling deposits of upper-slope channels,
but are poorly represented in the upper-slope eddy bars and the channel fills on the proximal basin floor. The eddy bars and basin-
floor channel fills primarily consist of particles finer than 200pum, which we interpret as the size fraction that was fully-suspended on
the upper slope. This size fraction dominates the eddy-bar deposits because only fully suspended particles can be advected into the
bank-attached zones of flow separation in significant volumes. We will synthesize depositional styles and grain-size data in order to:
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1) produce a facies model for thick bank-attached bar deposits built in zones of flow separation associated with planform irregularity
in submarine channels, 2) estimate flow velocities and current thicknesses; and 3) assess sediment sorting and storage between
channels on the upper slope and the proximal basin floor.
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3-D geometries to processes of bar construction
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Concave Benches

 Pure suspension deposition in separation zones
(Woodyer, 1975; Hickin, 1979; Smith et al., 2009)

* Hitherto under-recognized in submarine channels




Upper slope channels in the Brushy Canyon Fm.

Thick submarine slope channel fills exposed in dip-oblique
section, in Shumard Canyon in the Guadalupe Mountains



Study locations on
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styles

Depos

1. Channel filling deposits: Thickly-bedded, relatively coarse,
bedload filling in topography

2. A bank-attached bar: Finer grained sediment settling from
suspension in low-velocity zones along channel margins,
while channel relief is maintained
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Gravel-rich deposits

Thickly-bedded, structureless, planar-stratified and dune
cross-stratified sands stones. Occasionally gravel-rich.

Filling topographic lows




Bank-attached separation bar

Formed at channel margin.




Bank-attached separation bar
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Bank-attached separation bar
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Bank-attached separation bar

Ripple transport at high angles relative to azimuth of bedding dips.




Bank-attached separatlon bar
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Bank-attached se aration bar
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Bank-attached separation bar

Planar stratified sands
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Bank-attached separation bar

Lateral transitions between facies over small distances
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Bank-attached separation bar
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Re-attachment bar on Colorado river

Similar facies associations in a separation zone bar
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Bars versus channel fills: Grain-sizes of sand

100

90 -
80 -
70 -
60 -
50 -

40
30
20
10

0

Percent less than

Rippled sands

Dune cross-stratified

sands

Planar stratified sands

= (Cross-stratified

| Channel fills

channel fills

1 = Gravel-rich channel fills

//
// 7
Bar My 4

—
a——

10 100
Grain Size (um)

I I [

1000

Coarser particles in channel filling deposits.

Interpreted as bedload or incipiently suspended load

(travelling near the bed)




Internal consistency in interpreted transport of sediment
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Bimodality in bar
deposits

Distributions usually unimodal (peak at
120pum)

Occasionally bimodal

Second sediment source from closer to
the thalweg (second peak at 210um)
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Basin floor channel fills

Sub- to super-critically climbing 3-D dunes in channel fills.
Requires sediment sourced from suspended load.
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Climbing dunes, basin floor channel fills




Linking bars to channel fills on the basin floor
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Summary: Facies Model
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