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Abstract 
 
Microcrystalline quartz prevents the growth of ordinary quartz cements and leads to anomalously high porosity in deeply buried petroleum 
reservoirs. Oxygen isotope analysis of microcrystalline quartz and other quartz cements provide data to help understand the growth mechanisms 
for porosity preserving microcrystalline quartz. High precision, in situ oxygen isotope analyses of Cretaceous Heidelberg Formation detrital grains 
and quartz cements show three varieties of authigenic quartz cement growing on detrital quartz grains. This micron-scale data provides evidence 
that: (1) Porosity preserving microcrystalline quartz forms on a chalcedony substrate, and (2) that there were two episodes of fluid influx into the 
Heidelberg Formation.  
 
Detrital quartz has an average δ18O composition of +9.40/00 and mesoquartz (syntaxial overgrowth) has an average composition of +19.30/00, 
microcrystalline quartz has an average composition of 21.70/00. Estimates of the δ18O composition of chalcedonic quartz are complicated by the 
problem of isolating the microcrystalline quartz from the chalcedony; mixtures of the two give a consistently higher δ18O (27.40/00) than 
microcrystalline quartz. From oxygen isotope data, the formation of microcrystalline quartz and chalcedonic quartz is interpreted to have taken 
place in a small temperature range of between 80 and 140° C. Wavelength dispersive spectroscopy (WDS) data supports the paragenetic data and 
suggests that two episodes of enrichment in aluminum and iron in the microcrystalline quartz and chalcedony. These two distinct layers formed 
from two episodes of highly concentrated brines, emanating from a hydrothermal source associated with nearby faulting in the Harz Mountains 
mining district, Germany. 
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Overview 

1) Porosity preserving mechanism       microquartz  

2) Origin of microquartz = early meteoric diagenesis   

3) Isotope data confirms low temperature 
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=200 µm; BC+E1-3; Step=0.75 µm; Grid796x744
 

Girdle of microquartz rotating about the c-axis.  
The trace of a great circle matches the 
orientation of the face of the detrital grain on 
which the microquartz is growing. 

c-axis 

EBSD evidence indicates that the crystals of 
microquartz have grown with their c-axes 
parallel to the surface of the grain like length-
fast chalcedony.   

The c-axis growth 
is controlled by 
the surface 
material, a-axis is 
random 

EBSD Orientation 

0.20 µm

SAD #4

SAD #5

TEM 

 

Bright-field TEM Image 

Microdiffraction Spot 1 

Microdiffraction Spot 2 

TEM sample from FIB 
1000 nm  

 
100 nm 

 

TEM 

Nanocrystalline quartz 
100 nm 

TEM 

Spot 1 

Spot 2 

Porosity 



 

6/12  

Scan 1 

14 

22 

32 

11 22 

8 

b 

 CL  Cameca N50 Nano SIMS 

Secondary Ion Mass Spectrometry 
δ18O Locations:  Scan 1, 2, and 3 

Sample Area 

UW-1 Standard 

 TS 

N50 = 50nm resolution 
Porosity 

XOM Corporate Strategic Research 
Clinton, New Jersey 



 

7/12  

2 

8 

14 

8 14 

22 

32 

11 

22 

1 3 

Scan 2 Scan 3 

Sample number Sample number Sample number 

δ18O Values (V-SMOW) 

 CL   CL   CL  
Porosity 

Porosity 

Porosity 

7 

19 

12 

21 

23 
24 

30 

DG 

OG 

MQ 

CH 

Scan 1 



 

8/12  

0

20

40

60

80

100

120

140

160

180

200

-10.0 -5.0 0.0 5.0 10.0
δ18O-H2O ‰

Te
m

pe
ra

tu
re

 °
C

20.3

22.7

27.4

Quartz overgrowth 

Microcrystalline quartz 

Chalcedony 

Calculated Temperature Curves 

Meteoric  Oceanic Magmatic 

Using Clayton et al., 1972 

δ18O values 

34o 

57o 
70o Quartz overgrowth 

Microcrystalline quartz 

Chalcedony 



 

9/12  

 

Quartz Overgrowth 

 

Amorphous 
silica 

Amorphous 
silica 

Chalcedony 
Chalcedony 

 

a 

 

 
Qtz 
 OG 

Detrital  

µQ 

  

Trace Element Analysis  

Mq Mq 

 

Sample Number 

C
on

ce
nt

ra
tio

n 
(W

t.%
) 

1.0 

Aluminum 

Manganese 

Chromium 

Iron 

Titanium 

Calcium 

Potassium 

Magnesium 

Sodium 



 

10/12  

Generalized Silica Sinter Sequence 
Amorphous/Opal-A → Opal-CT → Chalcedony → Microquartz 

Conclusions 

Step = 0.2 µm 

∅ 200 nm 
step size 

Sandstone of the “Teufelsmauer” (“Devil’s Wall”), Heidelberg Formation  

Overgrowth    +20.3‰  70°C 

 
Microquartz   +22.7‰.   57°C 

Chalcedony  +27.4‰ 34°C 

δ18O      Temp. 

1)  Porosity preserving mechanism         microquartz  

2)  Origin of microquartz = early meteoric diagenesis   

3)  Isotope data confirms low temperature 
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Literature data from:  Blatt, 1987; Vagle et al., 1994; Murata et al., 1977; Harwood et al., 2010; Pollington et al., 2011; Marchand et 
al., 2002; O’Neil and Hay, 1972; Knauth and Epstein, 1976; Abruzzese et al., 2005; Williams et al., 1997; and Harvig et al., 1995. 

Isotope Values versus Literature 

Oxygen Isotope Values from the Heidelberg Formation versus Literature in V-SMOW
DG OG MQ MQ/Chal. Cristobalite Bio. Opal

Heidelberg Fm. Average 9.4 20.3 22.7 27.4
Literature Average 12.2 20.0 23.8 28.3 29.4 37.4

Heidelberg Fm. Range 7.7_12.4 19.0_21.9 21.0_23.5 24.5_30.8
Literature Range 4.2_24.1 12.6_32.4 24.9_32.4 27.9_30.4

Heidelberg Formation silica polymorphs:  
DG = Detrital Silica 
OG = Quartz Overgrowths 
MQ = Microcrystalline Quartz 
MQ/Chal. = Microquartz and Chalcedony 
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Porosity Uplift from Microquartz Coatings 
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Central N. Sea Fulmar, Ajdukiewicz, 1994, U. Jurassic sands at 3 to 4 km 
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