PSSequence Stratigraphy, Climate, and Organic-Richness: Green River Formation, Lake Uinta, Colorado*
Kati Tanavsuu-Milkeviciene, J. Frederick Sarg!, Jufang Feng®, Suriamin Huang? and Yuval Bartov®

Search and Discovery Article #50695 (2012)**
Posted August 13, 2012

* Adapted from poster presentation at AAPG Annual Convention and Exhibition, Long Beach, California, April 22-25, 2012

Editor’s note: Please view a companion article by Jufang Feng, J. Frederick Sarg, Kati Tanavsuu-Milkeviciene, and Suriamin Huang, entitled “Climate History, and
Lake Evolution Controls on Oil Shale Organic Richness-Green River Formation, Piceance Creek Basin,” Search and Discovery Article #50688 (2012).
**AAPG©O2012 Serial rights given by author. For all other rights contact author directly.

'Colorado School of Mines, Golden, Colorado, U.S.A. (ktanavas@mines.edu; jsarg@mines.edu; jfeng@mines.edu)
’ExxonMobil, Jakarta, Indonesia
*Israel Energy Initiatives, Jerusalem, Israel

Abstract

The Green River Formation in the Piceance Creek basin is comprised of kerogen-rich and kerogen-poor mudstones i.e. oil shales, siliciclastics,
and carbonates, formed in a deep (10’s of meters), stratified lake environment. Small-scale (meters thick) and large-scale (10’s meters thick)
depositional cycles are composed of deepening-upward depositional sequences that mark abrupt changes in lithofacies and oil shale richness.
Cyclicity is controlled by variations in runoff and vegetation that influence the inflow of siliciclastics and nutrients, and therefore also the
distribution of facies and formation of organic-rich deposits. Cycles are bounded by sequence boundaries and correlative conformities, and are
divided into units that represent low, rising, and high lake levels. During times of low runoff, lake level was low, vegetation decreased, fewer
nutrients were brought into the lake, and lean oil shales formed. Thin marginal deposits formed during low lake level, and at times, evaporite
deposition occurred in the deeper part of the basin. During the change to a wetter period, runoff increased and nutrient input increased. The rising
lake level is, in many places, marked by delta front sandstones on the lake margin. Microbial and shoaling grainstones occur above and adjacent
to the sand input areas. In the profundal area, rich oil shale breccias, as gravity flow deposits, formed. Subsequent wet periods increased
vegetation and runoff, bringing high lake levels, and increased nutrients, resulting in rich oil shales. Profundal units are composed of gravity
flow and laminated oil shale deposits. Correlating cycles to published age dates, the large-scale cycles are interpreted to represent 400ky
eccentricity cycles. Published early Eocene hypothermals correlate with five of these sequence boundaries. The small-scale cycles may be a
combination of the 100ky eccentricity and 25ky precession cycles.

Depositional cycles are grouped into lake evolution stages that reflect longer-term changes in the basin, controlled by both climate and tectonics.
Stage 1, Fresh Lake, was deposited during decreasing tectonic activity and increasing climate control. Climate dominated Lake Stages 2 and 3,
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Transitional and Rapidly Fluctuating Lakes. These stages are characterized by high frequency cyclicity. Stages 4, 5, and 6, Rising, High, and
Closing Lakes record the change to a wet climate and tectonic activity, resulting in increasing siliciclastic input and closing of the lake.
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ABSTRACT

The Green River Formation in the Lake Uinta (Colorado) is comprised of kerogen-rich and kerogen-poor mudstones i.e. oil
shales, siliciclastics, and carbonates, formed in a deep (10's m), stratified lake environment. Small-scale (meters) and large-
scale (10's meters) depositional cycles are composed of deepening-upward depositional sequences that mark abrupt changes
in lithofacies and oil shale richness. Cyclicity is controlled by variations in runoff and vegetation that influence the inflow of
siliciclastics and nutrients, and therefore also the distribution of facies associations and formation of organic-rich deposits.
Cycles are bounded by sequence boundaries and correlative conformities, and are divided into units that represent low, rising,
and high lake levels. During times of low runoff, lake level was low, vegetation decreased, fewer nutrients were brought into the
lake, and lean oil shales formed. Thin marginal deposits formed during low lake level, at times, evaporite deposition occurred in
the deeper part of the basin. During the change to a wetter period, runoff increased and nutrient input increased. The rising lake
level is, in many places, marked by delta front sandstones on the lake margin. Microbial and shoaling grainstones occur above
and adjacent to the clastic input areas. In the profundal area, rich oil shale breccias, as gravity flow deposits formed.
Subsequent wet periods increased vegetation and runoff, bringing high lake levels, and increased nutrients, resulting in rich oil
shales. Profundal units are composed of gravity flow and laminated oil shale deposits. Correlating cycles to published age
dates, we interpret the large-scale cycles to represent 400 ky eccentricity cycles. Published early Eocene hyperthermals
correlate with five of these sequence boundaries. The small-scale cycles may be a combination of the 100 ky eccentricity and
25 ky precession cycles.

Depositional cycles are grouped into lake evolution stages that reflect longer-term changes in the basin controlled by both
climate and tectonics. Stage 1, Fresh Lake, was deposited during decreasing tectonic activity and increasing climate control.
Climate dominated during Stages 2 and 3, Transitional and Highly Fluctuating Lakes. These stages are characterized by high
frequency cyclicity. Stages 4, 5, and 6, Rising, High, and Closing Lakes record the change to wet climate and increasing tectonic
activity, resulting in increasing siliciclastic input and the closing of the lake.
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EOCENE CLIMATE CURVE AND LAKE STAGES
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Lake stages correlate well with the early to middle Eocene climate curve and characterize depositional trends that occured troughout the lake evolution.

Three lake correlation model indicates connection between the Uinta (U), Piceance Creek (PC), and Greater Green River (GGR) basins.

Lake stages are process-based, and were separated based on depositional trends, facies association distribution, richness of oil shale, water chemistry,
degrees of lake restriction and salinity, and siliciclastic sediment input. Lake stages characterize large-scale changes in sedimentological pattern and
depositional trends that are controlled by combination of climate and tectonics. Originally lake stages were separated for the PCb (Tanavsuu-
Milkeviciene & Sarg in press). However, similar depositional trends and overall basin behaviour occur also in the Uinta and Greater Green River basins.

Closing of lakes during Stages 6 and 7, is not a time-stratigraphic unit and occurs at different times in different basins. Closing lake stage characterizes
the final stage of the lake evolution, and marks the intertonguing of mudstones/oil shale deposits with prograding siliciclastic deposits.

Lake stages: PCb (Tanavsuu-Milkeviciene & Sarg in press), Ub (*after Vanden Berg & Birgenheier 2011 personal communication), and GGRb (**after Smith et al. 2008, 2010;
Carroll 2010 personal communication). Age data and related correlation (after Smith et al. 2008, 2010). Rich and lean zones (Cashion & Donnell 1972, 1974; Vanden Berg
2008; Mercier et al. 2009). The R6 subdivision in Ub (after Birgenheier & Vanden Berg 2010). Geomagnetic polarity timescale, Eocene boundaries, negative carbon isotope
excursions, and hyperthermals (Zachos et al. 2001, 2008, 2010; Sexton et al. 2006; Dutton et al. 2005; Lourens et al. 2005; Nicolo et al. 2007; Bijl et al. 2009; Stap et al. 2010).
Sequence boundaries (Tanavsuu-Milkeviciene & Sarg 2011). Stratigraphy: Ub (after Remy 1992; Schomacker et al. 2010; Selfetal. 2010a), PCb (after Pitman, 1996; Selfet al.
2010b; Johnson et al. 2010; Tanavsuu-Milkeviciene & Sarg in press), GGRDb (after Roehler 1993; Smith et al. 2008, 2010). Buff Marker bed (after Chetel & Carroll 2010).

Microbial carbonate, formed on carbonate Middle Eocene insect (unkown Fish remnants, found from HL deposits during the

shoal. species), found from the upper S3.
section of the Green River Fm.

CONCLUSIONS

Forming of rich or lean oil shale deposits is connected with the climate fluctuation
from humid to dry. Climate controls variation in runoff, vegetation, nutrient, and
siliciclastic input into the lake that in turn affects lake-level fluctuation and
changesin production, destruction, and dilution.

Richest oil shale deposits form in the beginning of the rising lake or in the later
part of the high lake level.

Deposits formed during the later part of the high lake level, form a good
correlative unit, and can be traced from the margin to the deeper part of the lake.
This correlative unit changes from mudstone and siltstone dominated deposits to
lean oil shales, and finally to rich oil shales in the deeper part of the basin.
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