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Abstract

The Green River Fm. lake deposits (early-middle Eocene) in the Piceance Creek basin are largely composed of kerogen-rich and kerogen-poor
mudstones (clay and carbonate). Lake evolution is defined by lake stages: S1-Fresh Lake, S2-Transitional Lake, S3-Rapidly Fluctuating Lake,
S4-Rising Lake, S5-High Lake, and S6-Closing Lake. Lake stages correlate to the early to middle Eocene optimum. S1 appears to have formed
during the warming phase of the climate optimum and represent the basin evolution from fresh to saline conditions. The lake changed during S1
from an open lake to a closed lake basin suggesting a change from abundant rainfall and high runoff, to more seasonal and dryer climate.
Increased seasonality and flashy runoff began during S2, indicating restricted lake conditions, and peaked during S3, at the maximum of the
climate optimum, when arid conditions prevailed, and nahcolite and halite are abundant. The ensuing lake level rise (S4) and high lake (S5)
occur during climatic cooling, accompanied by increased precipitation.

The organic deposition of the Green River oil shale is related to three factors: production, destruction, and dilution. The pattern of organic
richness variation within 400k year sequences suggests a net-productivity-driven organic depositional model modified by variations in dilution
related to climate. Inorganic geochemistry proxies (P, Al, V/Cr, C13, and O18) suggest net productivity and dilution by siliciclastics and/or
evaporites also controls the average organic richness variation over the long-term lake history. This is evident in the variation between Green
River rich-zones (R), expressed here as changes in average oil yield in gal/ton. During S1, stratified conditions first developed, and moderately
high net productivity and diminishing detrital dilution occurred as the climate dried, resulting in increasing richness (R0-21gal/ton, R1-
27gal/ton). High productivity and low dilution peaked in early S2, resulting in very high richness (R2-39gal/ton). Richness then declined as
evaporate precipitation increased (R3-25gal/ton). S3 shows decreasing average organic richness from an early high to a minimum at the end of
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S3, when increased saline mineral dilution occurred at the peak of the climate optimum (R4-36gal/ton, R5-21gal/ton). Net productivity increased
during subsequent climate cooling, with a return to wet conditions (S4, S5). Diminished saline dilution resulted in increasing organic richness
(R6-24gal/ton, R7-30gal/ton).

Selected References

Bohacs, K.M., G.J. Grabowski, Jr., A.R. Carroll, P.J. Mankiewicz, K.J. Miskell-Gerhardt, J.R. Schwalbach, M.B. Wegner, and J.A. Simo, 2005,
in N.B. Harris, (ed.), The deposition of organic-carbon-rich sediments; models, mechanisms, and consequences: Special Publication, Society for
Sedimentary Geology, v. 82, p. 61-101.

Johnson, R.C., 1984, New names for units in the lower part of the Green River Formation, Piceance Creek basin, Colorado: USGS Bulletin
1529-1, 20 p.

Sewall, J.O., and L.C. Sloan, 2006, Come a little bit closer; a high-resolution climate study of the early Paleogene Laramide foreland: Geology,
v. 34/2, p. 81-84.

Smith, M.E., K.R. Chamberlain, and A.R. Carroll, 2010, Eocene clocks acre: Coeval 40 Ar/39Ar, U-Pb, and astronomical ages from the Green
River Formation: Geology, v. 38/6, p. 527-530.

Tanavsuu-Milkeviciene and K., J.F. Sarg, in press, Evolution of an organic-rich lake basin — stratigraphy, climate, and tectonics: Piceance Creek basin,
Eocene Green River Formation: Sedimentology, doi: 10.1111/5.1365-3091.2012.01324.x.

Zachos, J., M. Pagani, L. Sloan, E. Thomas, and K. Billups, 2001, Trends, rhythms, and aberrations in global climate 65 Ma to present: Science,
v. 292, p. 686-693.



Plate 1, AAPG - Long Beach, 2012

ABSTRACT

The Green River Fm. lake deposits (early-middle Eocene) in the Piceance Creek basin are largely composed of kerogen-rich
and kerogen-poor mudstones (clay and carbonate). Lake evolution is defined by lake stages: S1-Fresh Lake, S2-Transitional
Lake, S3-Highly Fluctuating Lake, S4-Rising Lake, S5-High Lake, and S6-Closing Lake. Lake stages correlate to the early to
middle Eocene climate optimum. S1 appears to have formed during the warming phase of the climate optimum and
represents the basin evolution from fresh to saline conditions. The lake changed during S1 from an open lake to a closed lake
basin suggesting a change from abundant rainfall and high runoff, to more seasonal and dryer climate. Increased seasonality,
and flashy runoff began during S2, indicating restricted lake conditions, and peaked during S3, at the maximum of the climate
optimum, when arid conditions prevailed, and nahcolite and halite are abundant. The ensuing lake level rise (S4) and high
lake (S5) occur during climatic cooling, accompanied by increased precipitation.

The organic deposition of the Green River oil shale is related to three factors: production, destruction, and dilution. The pattern
of organic richness variation within 400k year sequences suggests a net-productivity-driven organic depositional model
modified by variations in dilution related to climate. Inorganic geochemistry proxies (P, Al, V/Cr, C13, O18) suggest net
productivity plus dilution by siliciclastics and/or evaporites also controls the average organic richness variation over the long
term lake history. This is evident in the variation between Green River rich-zones (R), expressed here as changes in average
oil yield in gal/ton. During S1, stratified conditions first developed, and moderately high net productivity and diminishing
detrital dilution occurred as the climate dried, resulting in increasing richness (R0-21gal/ton, R1-27gal/ton). High productivity
and low dilution peaked in early S2, resulting in very high richness (R2-39gal/ton). Richness then declined as evaporate
precipitation increased (R3-25gal/ton). S3 shows decreasing average organic richness from an early high to a minimum at the
end of S3, when increased saline mineral dilution occurred at the peak of the climate optimum (R4-36gal/ton, R5-21gal/ton).
Net productivity increased during subsequent climate cooling, with a return to wet conditions (S4, S5). Diminished saline
dilution resulted in increasing organic richness (R6-24gal/ton, R7-30gal/ton).
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ORGANIC CARBON DEPOSITIONAL MODEL GEOCHEMISTRY AND ISOTOPE DATA OF THE PICEANCE CREEK BASIN
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EOCENE CLIMATE CURVE ana LAKE STAGES

Plate 3, AAPG - Long Beach, 2012

After Zachos et al. 2001

Lake stages correlate well with the early to middle Eocene climate curve.
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CLIMATE EFFECTS ON PRODUCTIVITY ana DILUTION

Stage and
Climate

Lake Condition

Net Productivity

S5 High lake
Cooling of the climate

Significant runoff and high lake level.
High chemocline.

High to moderate productivity, low
destruction and dilution.
R7 - 30 gal/ton

S4 Rising lake
Beginning of the cooling of the climate

Increasing runoff and nutrient influx.

High to moderate productivity,
moderate to high destruction.
R6 - 24 gal/ton

S3 Highly fluctuating lake
Climate optimum

Saline lake, halite deposition. Nutrient
supply from periodic runoffs.

Moderate to high productivity,
increasing dilution by evaporites.
R5 - 21 gal/ton
R4 - 36 gal/ton

S2 Transitional lake
Beginning of the climate optimum

Increasing lake restriction and salinity.
Beginning of stage is marked with
increased siliciclastic input.

Moderate to high productivity and low
destruction. Increasing evaporite
dilution.

R3 - 25 gal/ton
R2 - 39 gal/ton

S1 Fresh lake
Warm up to the climate optimum

Increasing lake restriction, fresh to
brackish water. High runoff and
nutrient input.
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