Estimation of Suspended Sediment Concentrations during Deposition of Turbiditic Structureless Sandstones of the Middle Permian Brushy Canyon Formation, South New Mexico*

Kannipa Motanated¹ and Michael M. Tice¹

Ugctej "cpf 'F kueqxgt { 'Ct vkerg' % 28: 3' % 4234+, , " Rquugf 'Cwi wuv' 35. '4234"

, Cf cr vgf 'htqo ''qtcn'r tgugpvcvkqp''cv'CCRI ''Cppwcn'Eqpxgpvkqp''cpf ''Gzj kdkvkqp.''Nqpi ''Dgcej .'Ecnkhqtpkc.''Cr tkn'44/47.''4234'' , , CCRI Í 4234''Ugtkcn'tki j wı''i kxgp''d {''cwj qt0'Hqt''cm''qvj gt''tki j wı''eqpvcev''cwj qt''f ktgevn(0''

 3 Vgzcu'C(O 'Wpkxgtukv{.''Eqngi g''Uvcvkqp.''VZ '**<u>no qvcpcv7B pgq0co w0gf w</u>+''

Abstract

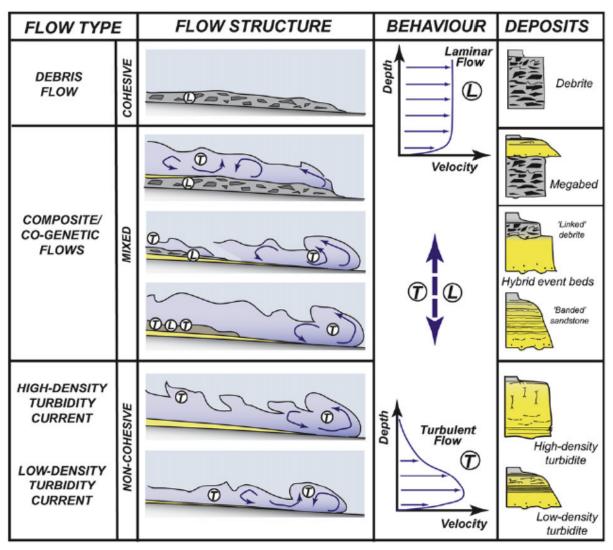
Ur cvlcri'cpf "uk g"f kurkdwkqpu"qh"o kpgtcri'i tckpu"y kj "eqpvtcurkpi "f gpukskgu"kp"o cuukxg"ucpf urqpgu"*Dqwo c"C"f kxkukqpu#qh" wtdkf ksgu"htqo "vj g"O kf f rg"Rgto kcp"Dtwij { "Ecp{qp"Hqto cvkqp"y gtg"wugf "vq"gurko cvg"uwur gpf gf "ugf ko gpv"eqpegpvtcvkqpu"qh"y g" f gr qukskpi "wtdkf ks{ "ewttgpvu0"Ugo ks wcpvkcvkxg"grgo gpvcn"f kurkdwkqpu"kp"o cuukxg"ucpf urqpg"uco r rgu"y gtg"gurko cvgf "d{"z/tc{" hrvqtguegpeg"cpcn(vkcn'o ketqueqr {0"Vj g"tgurvnu"y gtg"y gp"wugf "vq"gurko cvg"y g"ur cvkcn'opf "uk| g"f kurkdwkqpu"qh"| kteqp"cpf " hgrf ur ct"i tckpu0"J { f tcwrke "uqtvkpi "qh"y gug"i tckpu"tgurvngf "kp"ej ctcevgtkrvke "xgtvkecn'r tqhkrgu"qh"| kteqp"i tckp"cdwpf cpeg"y kyj kp" y g"urt wewttgrguu"ucpf urqpg"f kxkukqpu0"Grgo gpvcn'o cr u"uj qy "pq"i tcf kpi "kp"i tckp"ukl gu"qh"gkyj gt"j gcx{"qt"riki j v'o kpgtcnu0" J qy gxgt."| kteqp"i tckp"cdwpf cpeg"f getgcugf "wr y ctf "y kyj kp"y g"urt wewttgrguu"ucpf urqpg"f kxkukqpu"tgrcvkxg"vq"y cv'qh"hgrf ur ct" i tckpu0"Vj gug"tgurvnu"uwi i guv'yj cv'| kteqp"i tckpu"dgj cxgf "cu"j {f tcwrkecm("eqctug"eqo r qpgpwu"qh"y g"i tckp"r qr wrcvkqp0"Wukpi " f khrtgtgpv'o qf gnu"qh"y g"ghtgewu"qh"j kpf gtgf "ugwrkpi "qp"o kzgf "i tckp"r qr wrcvkqpu."y g"gurko cvg"c"xqnvo gvtke"ugf ko gpv" eqpegpvtcvkqp"i tgcvgt "y cp"42" 0"Vj ku'ko r nkgu'yj cv'cv'ngcuv'uqo g"Dtwuj {"Ecp{qp"Hqto cvkqp"C"f kxkukqpu'y gtg"f gr qukxgf "htqo " j {r gteqpegpvtcvgf "uwur gpukqpu0"

References

Haughton, P., C. Davis, W. McCaffrey, and S. Barker, 2009, Hybrid sediment gravity flow deposits-classification, origin and significance: Marine and Petroleum Geology, v. 26, p. 1900-1918.

Julien, P.Y., 1998, Erosion and sedimentation: Cambridge University Press, Cambridge, United Kingdom. 280 p.

Julien, P.Y., and Y.Q. Lan, 1991, On the rheology of hyperconcentrations: Journal HydrologicEngineering, v. 117/3, p. 346-353.


Estimation of Suspended Sediment Concentrations During Deposition of Turbiditic Structureless Sandstone of the Middle Permian Brushy Canyon Formation, South New Mexico (Abstract ID: 1236965)

Kannipa Motanated
Dr. Michael M. Tice
Texas A&M University

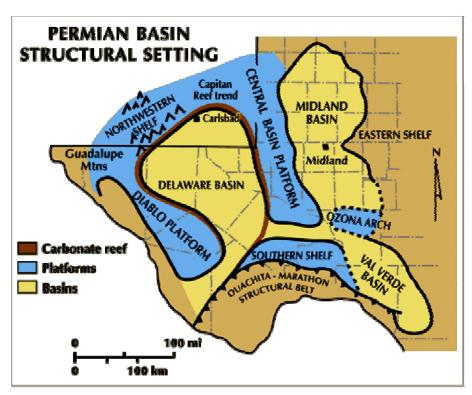
AAPG 2012 Annual Convention & Exhibition, Long Beach, California April 24, 2012

MOTIVATIONS

(Haughton et al., 2009)

- Turbidity flow sizes and properties
- Downslope reservoir size

APPROACH


- Forces in infinitely diluted and concentrated suspensions are not the same
- Light and heavy minerals grain will likely settle differently in concentrated suspension
- Zircon and K-feldspar are abundant in core samples
- X-ray fluorescence microscopy (XRF) allows in situ location and measurement
- Apply models of grain settling to infer volumetric concentration from sorting in size data

OUTLINE

- Backgrounds
 - Geologic background
 - Settling velocity models
- Methods
- Results
 - Abundances of heavy and light minerals
 - Size distributions of heavy and light minerals
- Analysis
- Conclusions
- Future work

GEOLOGIC BACKGROUND

The Brushy Canyon Fm., Delaware Basin, west Texas and south New Mexico

(http://www.beg.utexas.edu/techrvw/presentations/posters/wtgs-dutton/index.htm)

• The Brushy Canyon:

500 meters of sandstones and siltstones onlap the older carbonate slope deposits

Lowstand fan systems tracts:

laterally extensive sand-prone basin, sand-filled channels incised into siltstone on the slope

GEOLOGIC BACKGROUND

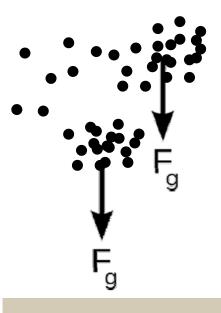
The Brushy Canyon Fm., Guadalupe Mtn. Nat'l Park

CM

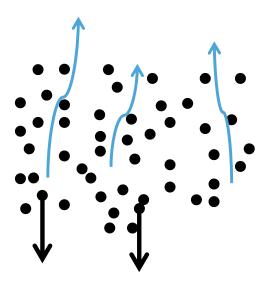
Bass Enterprizes Unit 46 Core

1 meter

Infinitely diluted suspension

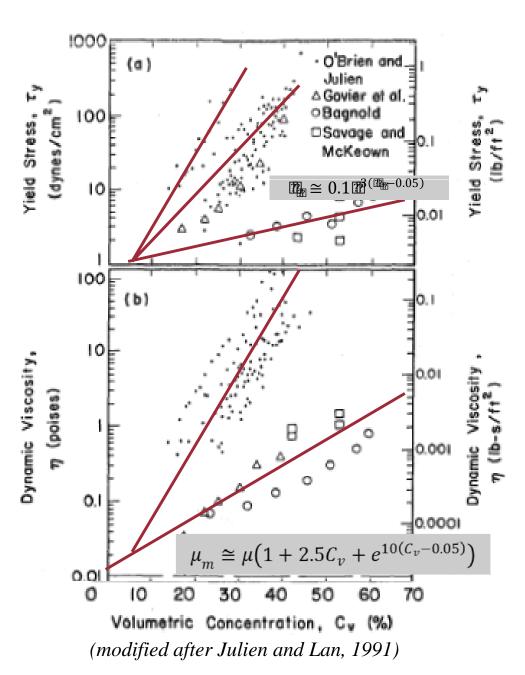


Stokes settling velocity:


$$u = \frac{d^2(\rho_s - \rho)g}{18 \,\mu}$$

Balancing viscous drag force to effective weight of particle

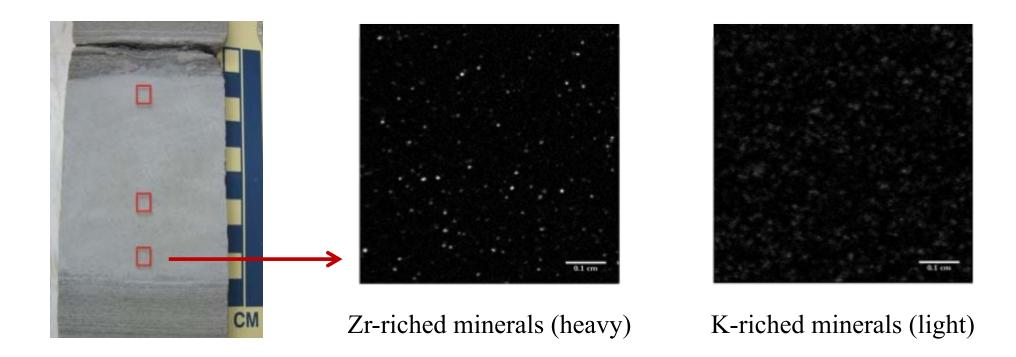
Concentrated suspension


Group Settling

Hindered Settling

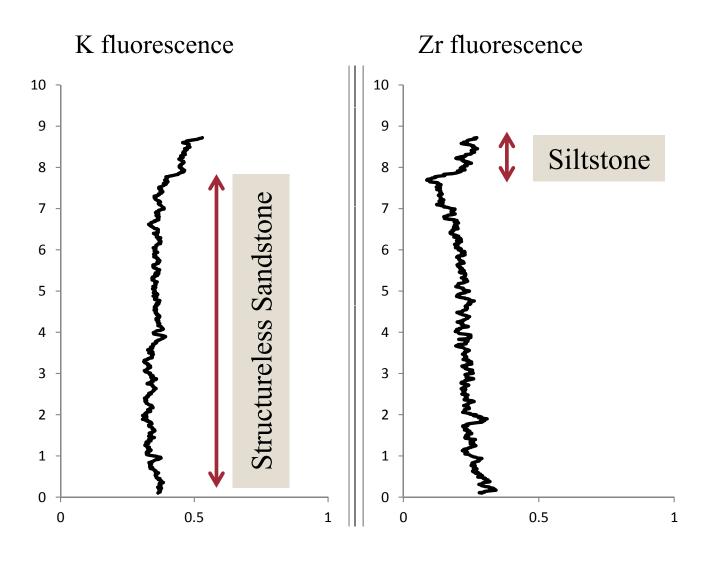
- Terminal velocity at Cv from 5%-40%
 - Richardson and Zaki' model

- u is Stokes' settling velocity
- u_1 is terminal velocity corrected by sediment concentration c
- n(zircon) = 4.6
- n(K-feldspar)=4.3

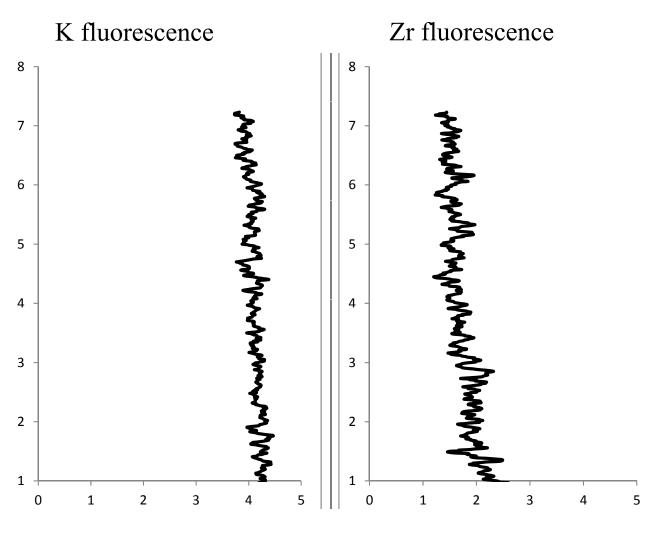


Hyperconcentrated suspension: Fluid properties are effected by suspended particles

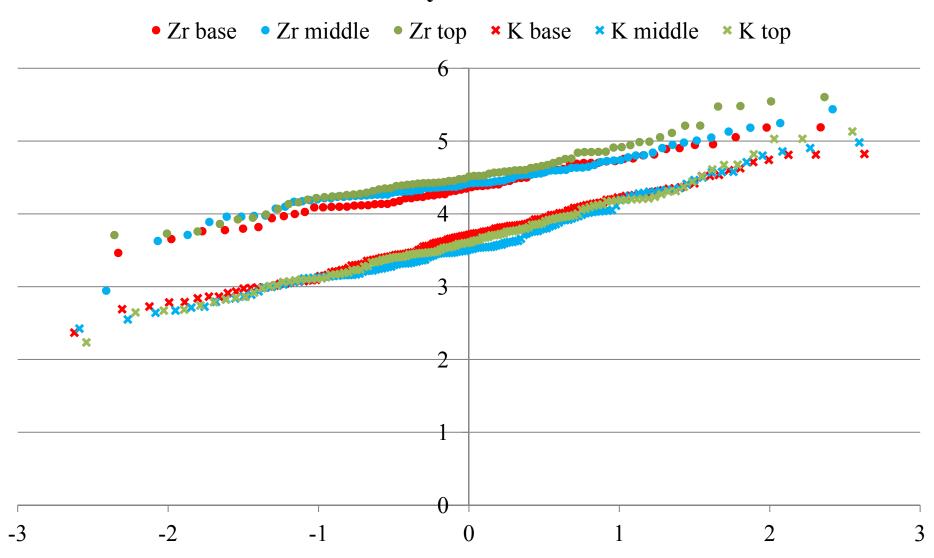
- Yield strength
- Dynamic viscosity
- Mixture density


Settling velocity for suspended load developed by Julien (1998)

METHODS


- Semiquantitative element maps obtained by the XRF
- Spatial abundances and grain size distributions of light and heavy minerals

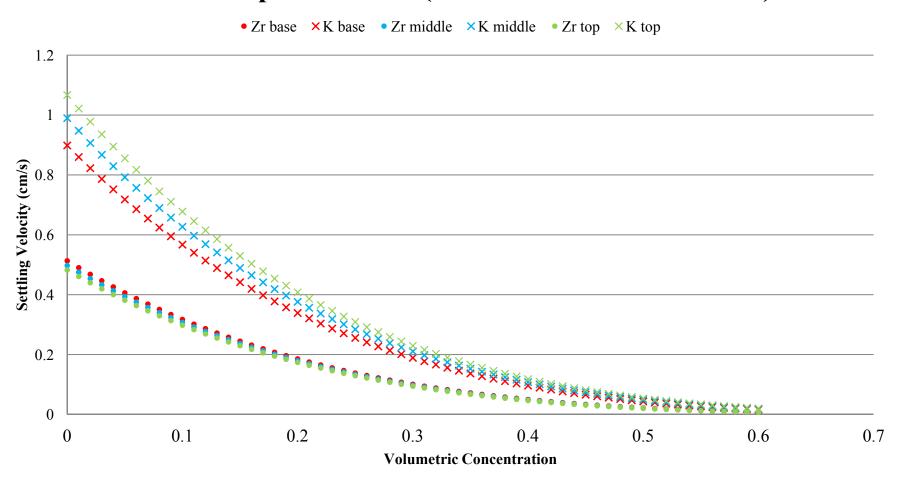
Abundances of heavy and light minerals


Bass Enterprizes Unit 46 at 6100 ft

Abundances of heavy and light minerals

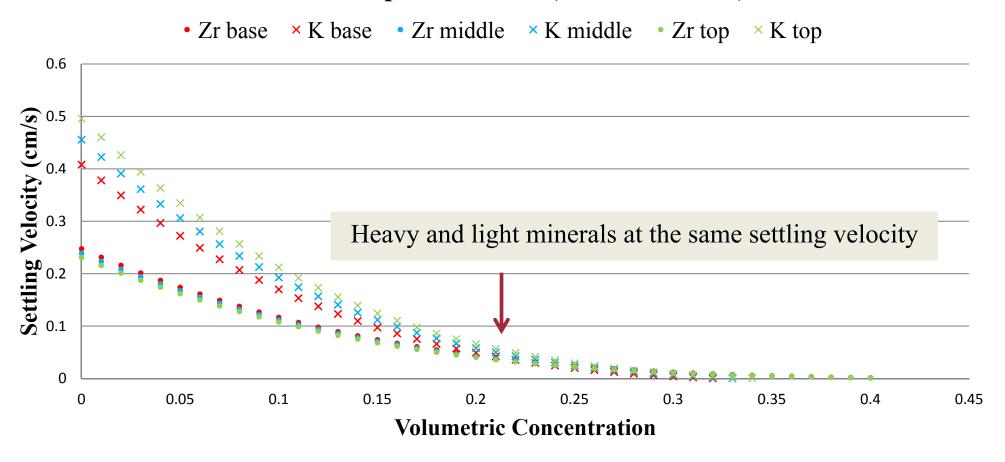
Bass Enterprizes Unit 46 at 6111.5 ft

Normal Probability Plot of Grain Diameter



Bass Enterprize 6100 ft	Height (mm) from the base	Number of grains	Avg. grain diameter (phi)	Zr/K
Zr 0	0	237	4.308 <u>+</u> 0.031	Base: 0.736 <u>+</u> 0.063
Zr 20	20	204	4.330 <u>+</u> 0.039	Mid: 0.652 <u>+</u> 0.059
Zr 60	60	142	4.352 <u>+</u> 0.030	Top: 0.497 <u>+</u> 0.051
K 0	0	322	3.276 <u>+</u> 0.042	
K 20	20	313	3.206 <u>+</u> 0.049	
K 60	60	286	3.152 <u>+</u> 0.044	

- No statistically significant size grading (t-test on means)
- Zircon grain abundance decreases upsection relative to K-feldspar
- Stokes terminal velocity of zircons are less than those of K-feldspars (calculated at infinite dilution)


ANALYSIS

Bass Enterprize 6100 ft (Richardson&Zaki's model)

ANALYSIS

Bass Enterprize 6100 ft (Julien's model)

CONCLUSIONS

- Zircons behaved like hydraulically coarse grains during deposition of massive sandstones
- At volumetric concentrations of 20%-30%, observed zircons and K-feldspars have similar settling velocities (Julien & Lan model)
- No existing models explicitly predict differential velocities during group settling of bimodal mixtures (different in both density and size)

FUTURE WORK

• Settling velocity experiments and modeling of hydraulically equivalent heavy and light particles