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Abstract

The Raton Formation lies within the Raton Basin, which spans the Colorado-New Mexico border within the foreland of the Sangre De Cristo
Range. The formation consists of sandstone, shale, coal, and conglomerates that were deposited within a closed intermountain basin and is now
an important target for coal bed methane within the region. Foreland subsidence in the Raton Basin accommodates the deposition of four key
formations; the Cretaceous Trinidad Sandstone, the Upper Cretaceous Vermejo Formation; the Paleocene Raton and Poison Canyon Formations.
The Raton Formation is notable for the discovery by C. Pillmore who found that the formation contains the global K-T boundary iridium layer.
The development of coal bed methane within the Raton Formation has provided a great deal of new subsurface data, which is the basis of this
research. The goal is complete high-resolution correlations between available data to evaluate the influence of orogenic uplift to the west on
sedimentation patterns as well as the extent and importance of a regional unconformity that persists within the western part of the basin. To the
east, the section is conformable, which could be interpreted as a shifting and east directed broadening of the Raton Basin as a function of the
growing orogenic wedge to the west. Alternatively, uplift of the western margin of the basin may have been driven by eastward migration of the
deformation front. In the case of the latter one would expect to see evidence of sedimentary bypass and erosion that varies at a local scale. For
the former, the western basin may have been abandoned entirely over regional scales producing a uniform progression of depositional facies. To
evaluate these models we are conducting a high-resolution correlation study of electrofacies throughout the available data. The results of which
can identify key stratigraphic events to test these models. A primary issue concerning the data is that many of the sand bodies within the system
are arkosic and have a strong gamma response similar to shale. This will require that we consider a range of petrophysical characteristics to
accurately differentiate sand from shale.
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Depositional Environment

- Although the coal is laterally extensive in the study areas, coal
is thickest in areas that were previously occupied by channel sys-
tems indicating an oxbow shape geometry for the thicker coal
seams.

- The incised valleys and braided geometry of the basal conglom-
erate indicate uplift of the western margin of the basin providing
a bypass surface.

Unconformity

Tectonic Model
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- The Vermejo Formation was deposited in an environment where peat production
was equal to the accommodation rate.

- During deposition of the basal conglomerate of the Raton Formation flexural
loading of the crust by the Sangre de Cristo uplift to the west prduced
accommodation that was greater than peat production creating a coal free zone.

- Progradation of the basal conglomerate out into the basin was then facilitated by a
drop in accommodation.

- As the thrust front migrated eastward into the basin the accommodation was again

equal to the rate of peat production resulting in the preservation of coal beds.

- In the Vermejo Park field this time was dominated by high avulsion frequency and
low coal preservation, whereas the Purgatorie field was a low avulsion frequency
dominated system and produced more thin coal beds.

Implications

- Well placement to maximize intersection of net pay intervals can be optimized based
on oxbow geometry of thickest coals.

- Wells can be strategically placed based on target interval. Vermejo Formation target
wells can be more widely spaced than Raton Formation target wells based on
lateral extent and vertical thickness of Vermejo coals versus Raton coals.
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