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Abstract

The Bakken-equivalent Sappington Formation in west-central Montana provides good evidence for tectonically driven instability and an
explanation for why part of the Devonian-Mississippian rock record is locally absent. Similar to the Bakken, the Sappington Formation
comprises organic-rich basal black shale, a shallowing-upward Siltstone Member, and younger upper black shale that correlates with the basal
Lodgepole Formation. In south-central Montana, north of Yellowstone Park, all three members are well developed. The facies and stacking
patterns record an east-to-west, down-to-basin polarity for the incipiently subsiding Central Montana Trough. To the northwest in the Three
Forks area, the lower black shale is locally eroded below the basal part of the Siltstone Member (e.g. Logan Type Section) before thickening
substantially to the west. The upper black shale displays a nearly opposite distribution. It is missing west of Three Forks and in other parts of
northwestern Montana, like along the southern Sweetgrass Arch (Alberta Bakken Fairway), where the Siltstone Member is also missing.

West of Three Forks at Milligan Canyon, the Siltstone Member is deformed into meter-scale detached slump folds that moved down a southeast-
oriented paleoslope. After slumping, the folds were sharply truncated by erosive currents and mid to distal ramp encrinite beds of the lower
Lodgepole. A southeast paleoslope and widespread submarine erosion demonstrate that basin polarity switched to a west-to-east orientation
during the Early Mississippian in western Montana. Paleohighs such as the Lemhi Arch (southwest Montana) and the paleo Sweetgrass Arch and
‘Montania’ (northwestern Montana) were active at this time and subjected to erosion or nondeposition. Basin polarity reverted back again to an
east-to-west orientation after filling of accommodation space, continued Mississippian subsidence and westward progradation of the Madison
Group.
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We conclude that the polarity reversal and erosion of the western upper black shale provides evidence for basin inversion, indicative of a
complexly loaded plate margin reactivated across shelf paleohighs and cratonic intrashelf basins (migration of an Antler forebulge?). Although
strata often look more subtly disconformable, our observations explain why there is an erosive submarine hiatus in the earliest Mississippian and
why key Bakken reservoir units were locally thinned or removed prior to Lodgepole deposition.
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SUMMARY

Recent outcrop study of the Bakken-equivalent Sappington
Formation in the Three Forks area provides evidence for
tectonically driven instability and explains the local absence of
the upper black shale in the western Central Montana Trough.
Thinning of the Sappington can also be seen regionally over
the Scapegoat-Bannatyne Trend and over Montania to the \y
northwest, as well as over the Lemhi Arch and Central ¢
Montana Uplift. Local development of synsedimentary folds at A
g

Central

Montana
Uplift

Milligan Canyon suggest seismic or gravity-generated
resedimentation of Sappington silts and sands on a southeast-
oriented paleoslope (which runs counter to east-west, shelf-to- tﬁ
basin Sappington stratigraphy and slope in the Central ¢
Montana Trough). Southeast-directed folding is also counter to &
long term Devonian and Mississippian paleoshelf orientation.

Synsedimentary folds were sharply truncated by erosive
currents and back filled by Lodgepole high-energy crinoidal
grainstone before undergoing subsidence and burial below
distal ramp facies.

Outcrop data
R —— KEY

Well data (incomplete)

Thrust fault (Sevier/ Laramide)
Normal fault (Tertiary)
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Py # it piano keyike reactivated basement faults of the
P Paleozoic shelf) after Dorobek et al. (1991).

INTRODUCTION
The presence or absence of black shales and a coarsening-upward Middle Member
in the Sappington/Bakken is of interest in terms of similar regional stratigraphic vari-
ation and petroleum exploration. Also differentiation on logs between the Bakken
and underlying Three Forks Formation can be unclear. Although these units have 2
distinctive characteristics and are bound by sequence boundaries, stratigraphic vari-
ations are complicated especially in the west by nondeposition or erosion in an

active continental borderland setting.

This work focuses on outcrop variations in the Sappington Formation at Milligan Latest Devonian paleogeographic Sketch Showing emergent/ Submergent islands

Canyon in the context of more regional correlations. The Sappington Formation was . . - .

deposited in the Central Montana Trough and shows facies, thickness and sequence and subbasins a|ong the shelf duri ng Antler loadi ng of the North American p|ate
similarities to the three Bakken members of the intracontinental Williston Basin. At (adapted after Baars, 1972)

the edges of such basins these units were subject to facies changes as well as physi-

cal nondeposition/ erosion and temporal hiatuses suggestive of eustatic sea level
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changes and composite sequence boundaries. Like the northwestern Williston Basin Truncated Synsedimentary Folds
of Saskatchewan, the Sappington Middle Member developed sandy, high-energy A key outcrop occurs west of Three Forks on the same thrust panel with Lone L] j
R . L . Lithology and primary sequence boundaries / major
shoreface to intertidal facies in its upper part (Christopher, 1961, Angulo et al, 2009). Mountain at Milligan Canyon East where the upper siltstone unit is deformed = Western Montana regional flooding surface sequence
We present a local example of more offshore correlatives of these facies into meter-scale detached synsedimentary folds that are consistent with w : Selon oK Proaracations]
(Sappington “western facies”) that were folded and truncated below Lodgepole slumping on a southeast oriented paleoslope. Following slumping, the () Z| _ fﬁ;sili_ferogs Semestone
crinoidal grainstone, resulting in the nondeposition of an upper Bakken or basal Sappington was truncated by erosive currents and no upper black shale was < S o LOd e Ole Ramp-slope facies: (Mission Canyon Fm)
Lodgepole black shale. ; ; ; ; - Niwnl|=2 gep muddy limestone with graded
deposited. Medium to thick bedded mid-ramp encrinite beds of the lower <]0 ) beds & crinoidal calcareous
Lodgepole were deposited above the truncation surface. Nearby at Dry Hollow, NI CL) leeStone dark mudstone m2
S.tra.tlgraphy . ) ) upper Sappington high-energy, cross-bedded to massive medium sandstones — QZ: Q Paine Member P —
Similar tF) the Bakkeq and Exshaw formations, the Sa_ppmgton Fm. comprises a Fate occur undeformed below the lower Lodgepole. A southeast-oriented E S § /
Famennian organic-rich basal black shale (0 - 40 ft thick), a shallowing-upward silt- paleoslope and widespread submarine erosion suggest that the basin polarity e e s fz deepramp + mudmounds |
stone member (resgrvoir: <69 to >100 ft),.and :.an Early Tournaisian upper black switched to a west-to-east orientation during the Early Mississippian in = e i sglicl_(_sﬁa_lffi_li iclastics, crinoidal l i
shale ((_) -5ft) that 15 sequentially correlative ‘f‘”th t_he basal Lodgepole and Banff western Montana. Ancient paleohighs such as the Lemhi Arch (Beaverheads 354 Siltst./Sandstone
forr.'natlons. A.m|d-.5|ltstone Member shale unit (Unit 4) also occurs and can be Mountains uplift) in the south and the Scapegoat-Bannatyne Trend and > Middle Sappington FeS——
regionally defined in the eastern Central Montana Trough. ‘Montania’ in northwestern Montana were active at this time, associated with 2 Basal Sappington s Fm3
) nondeposition and thinning of the Sappington and Three Forks. In some < Black shale
Northwest of Yellowstone Park near Bozeman, all three Sappington members are western locations the Lodgepole appears to overlie and thick black shale < Fm
well developed and individual units can be laterally correlated (after Gutschick et al., (lower + upper shale?) above the Late Devonian Jefferson or Birdbear/Nisku. -~ m
1962; 1964, Hammond and Sandberg, 1958). The faugs and stac_km_g .patterns o Regional basin polarity reverted to an east-to-west orientation after filling of -~ > E Fossiliferous limestone,
suggest a generally east-to-west, down-to-basin polarity for the incipiently subsiding accommodation space, followed by continued intense Mississippian w . and dark green shale w/ limestone Fm2
Central Montana Trough. Devonian and Mississippian units generally show i i i Z Trident Member HNodularerinoidal grainstones;
gn. pp 8 \ subsidence and large scale westward progradation of the Madison Group. = (7] 3 Idaho segs., 1-2 Montana seqs
significant thickness and facies changes away from the Montana-Wyoming stable X £
craton/shelf and towards Idaho (i.e., over the subsident older, outer shelf, and in O W %
and around intrashelf basins and Antler borderlands). > L Complex facies mosaic of
710(?0";””?3 2 w Logan Gulch evaporites (well developed in local basins),
Black Shale distribution isopath in meters w green & red shales & barren ¢
P e S
: LLI x Mem ber peritidal stromatolitic dolostone Fm1
Near Three Forks, Montana the lower black shale is locally eroded below the basal < I Potl h Anh . (central & western shelf).
transgressive limestone of the Siltstone Member and can thin from ~20+ ft at ~ ( otlatc n ydrlte) ‘ _ ‘
; Q Pelletal limestone with some fossils,
Beaver Creek, or 10 ft at Hardscrabble to less than 1 ft at the Logan Devonian Type w] 1 1B dolostone, & quartz arenite (western shelf)
Section. This thinning was most likely due to submarine erosion under a 364 Emo
transgressive limestone (similar but different in scale to the Lodgepole ) .

R X R 2 ~ Mainly dark subtidal, dolomudstone IFr1
disconformity above the upper black shale). The lower black shale thickens LLI =22 Birdbear Member ' Basal evaporites; shale. 3 Idaho segs.
substantially to the southwest and, similar to the Exshaw Formation, may become a 3 8 Q g IFr0
condensed deep sea interval below thick Mississippian turbidities. The upper black ~ = | ~ ~~  Multiple 3rd-order sequences.

hal t of t Mont h dst turbidit ithin it w < ' Mixed intertidal to subtidal dolomudstone
shale occurs east of western Montana where sandstone turbidites occur within it, < (%) ™ s fo and limestone with stromatoporoid Fr
suggesting that it may be genetically coeval with synsedimentary folds at Milligan < |« x Lower Member .. biostromes in HSTs. Some evaporites, 1-7
Canyon as well as coarse, upper Sappington Unit 6 sandstones with black shale alx ¥ 8 'A minor green shale, quartz arenite.
stringers observed at other locations. The upper black shale remains consistently T - 4 ———
thin below the Lodgepole Formation east of the Lombard thrust in the Helena \ 370 Maywood Formation £ Slligiciastics:and Holostons
Salient. Its distribution in the Central Montana TFOUgh is nearly OppOSite to the Late Devonian isopach map mdified after Dorobek (1991) and Sandberg et al. (1982). L =Logan - -

. B . (near Three Forks), MC= Milligan Canyon, L=Logan, H = Hardscrabble (Bridger Range), GF = Great
lower black shale, with an area of overlap between the two units (see figure). The Falls TE=Teo Fork, D = Dian, MU = CortaiMortana upit, YPU = YllowstonePark upi Late Devon 1Ian St rat| g ra phy Of

upper black shale is missing west of Three Forks, typically replaced by a thin

transitional zone of sandy carbonates with scoured erosional surfaces (e.g. Lone Approximate Late Devonian isopach Weste rn Montana

Mountain).

Time-slice latest Devonain lithofacies & isopach maps (from Sandberg et al, 1982)
Three Forks Formation Sappington / Bakken Formation

lower black shale = lowerMiddleMember | -UpperMiddle Member -
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observations predict that there is an erosive submarine hiatus in the earliest
Mississippian that locally thinned or removed the Sappington prior to Lodgepole
deposition. Given that the Sappington, Exshaw and Bakken were mostly preserved in SAPPINGTON WORK IN PROGRESS
different paleogeographic settings they suggest a background of climatic-eustatic
controls, before widespread intense subsidence below the Lodgepole system.

- More detailed section description and log analysis towards developing a Sappington sequence stratigraphy
- Palynology of the SW Montana Sappington and NW Montana Bakken (Mercedes Di Pasquo)

- Correlation of well logs with outcrop studies
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= Y Sappington. Q3 : ) 25 conodonts, echinoid spines, bryzoans and worm trackways. Vertical tubes and lateral galleries ~ @ < Med- sandstone, black shale streaked sandstone, and SB3 = East: multiple flooding surfaces. West: evidence for downslope synsedimentary
o° . o ) s D Gret_en-Gray Shale. Sharply over lies black shale, with 8 < » ) ;:r:gozi/?l santzs:jongs. VXesttern sectlons nortfdepzsned/ folding and truncation with western uplift and erosion (forebuldge migration?)
S AWelllaminated, fisile. Weathers to chippy. SV whic shely motera) Limes-upward. Brachiopods, came. 5 O (@) T Lower siltstone. Weathers orange, med gray.clac shaly sifstone and ity shale w/impure - W8 (08 nc oo oo o et itstones || Further west near ID-MT border SBO, SB1, $B2 and upper flooding surfaces may be
Depression fills on erosional surface. Few spores; a vale shetly : U pwarc. POCS, clams; 2" limestone. Silt forms ledges; shales are recessive. Gradational with underlying Unit E. Local thin =~ & < ded or time- ati ith clastic turbidites formi ianificant
1 in Bri (2)  snails, crinoids. Leached internal and external molds (similar ’ - 4 : : [ (Taonurus). eroded or ume-correlative with clastic turbidites rorming a more significan
./D conodonts. 7 ft in Bridger Mtns. ey ) ] bioclastic lenses of hash; brachs common in upper most part. Fossils sparsely scattered through- 3 disconformity (i.e. associated with arch uplift and downdrop)
b to Unit | above). out. Ripple marks, burrows. Unfavorable conditions for normal marine fauna. HCS. UNIT LITHOLOGY ¥ .8 P P
. . . . . . . . Fm 3 = Late Famennian & Devonian-Mississippian, SEQS
Working Sappington description, seq. stratigraphy, sea level curves, comparison with early work (Gutschick, 1964) [ ".mzws = Eary Tounaisian (out not earliest Tournaisian)
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