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Abstract 
 
Petrographic, SEM, and RockEval pyrolysis analyses of organic-rich shale samples from 6 wells that penetrated the Upper Jurassic 
Kimmeridge Clay Formation (KCF), offshore United Kingdom, were performed to evaluate the nature (physical and chemical) of the 
organic material and to document changes in organic porosity as a function of increasing thermal maturity. The formation is at depths 
ranging from ~6,100 ft to ~15,300 ft (subsea). It is thermally immature to marginally mature in the shallowest core samples, where 
total organic carbon (TOC) contents are as high as 10 wt%, vitrinite reflectance (Ro) values are ~0.6%, and hydrogen indices (HI ) are 
high (>400 mg hydrocarbon/g rock). In contrast, it is thermally mature in the deepest core (Ro values ~1.2%), with high TOC contents 
(as much as 8 wt%) but low HI values (<30 mg hydrocarbon/g rock). In addition, the KCF has intermediate HI and Ro values in other 
core samples. 
 
At least four distinct types of organic components were observed in petrographic and SEM analyses, which are, in decreasing 
abundance: 1) amorphous organic material admixed with clay platelets (as much as 20 μm long); 2) elongate (up to 300 μm) mat-like 
masses (micro-algal mat?) with small (<0.5 μm) quartz, feldspar, and clay entrained within it; 3) discrete particles (possibly alginate?); 
and 4) Tasmanites microfossils. Regardless of depth and thermal maturity, the following observations were made of porosity in shales 
of the KCF. On ion-milled surfaces, there are irregular-shaped micropores and nanopores (0.1-0.01 μm across) in some mat-like 
masses, whereas regularly shaped micropores (up to 1 μm across) are in the discrete organic particles. Other types of pores, 



particularly interparticle (i.e., between illite flakes or platelets as well as between authigenic quartz euhedra), and intraparticle (i.e., 
between crystallites in framboidal pyrite) are also present and are noteworthy because they compose much of the observable porosity 
in the KCF shales. 
 
No systematic increase in organic porosity was observed in any organic material within the KCF with increasing depth and thermal 
maturity. As such, organic porosity does not contribute significantly to overall pore volume in the KCF, even in organic-rich shales 
that are thermally mature. Therefore, the petroleum storage potential in the formation appears to reside largely within interparticle and 
intraparticle pores between or within inorganic components of the shales, respectively.  
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Approach

Characterize organic macerals (RockEval & petrography)

Evaluate maceral distribution

Observe organic pores (maceral type & maturity)g p ( yp y)

Evaluate inorganic poresEvaluate inorganic pores
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Maceral identification

RockEval—”gross” evaluation
Petrography—”fine” evaluationPetrography fine  evaluation
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Distribution of macerals

Where are macerals as a 
function of core location/

d iti l t ?depositional system?
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What other role might mineralogy play?
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Inorganic porosity

• Pores (intra-interparticle), function ofPores (intra interparticle), function of
grain types (clays, K-spar, etc.)

• Inorganic porosity significance (2nd)• Inorganic porosity significance (2nd)
• Porosity potentially significant, function 

f b lk i lof bulk mineralogy



Conclusions, Kimmeridge Clay Fm., UK
• At least 3 types of organic macerals in KCF

a) Bituminous mineral groundmass (Type II)
b) Microbial mats—lam. al. & bit. (Type II)
c) Terrestrial (Type III)

• Micro- & nanopores exist in all maceral typesMicro & nanopores exist in all maceral types
• No clearly systematic increase in micro- or 

nanoporosity w/increasing maturitynanoporosity w/increasing maturity
• Inorganic porosity exists at allmaturities & 

variability (mineralogy) is possiblevariability (mineralogy) is possible
• Inorganic porosity variability has potential for 

mineralogical control on porositymineralogical control on porosity
• Lack of ‘rigid’ mineralogical fabricKCF resulted in 

minimal organic porosity preservationminimal organic porosity preservation
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Abstract 
 
Petrographic, SEM, and RockEval pyrolysis analyses of organic-rich shale samples from 6 wells that penetrated the Upper Jurassic 
Kimmeridge Clay Formation (KCF), offshore United Kingdom, were performed to evaluate the nature (physical and chemical) of the 
organic material and to document changes in organic porosity as a function of increasing thermal maturity. The formation is at depths 
ranging from ~6,100 ft to ~15,300 ft (subsea). It is thermally immature to marginally mature in the shallowest core samples, where 
total organic carbon (TOC) contents are as high as 10 wt%, vitrinite reflectance (Ro) values are ~0.6%, and hydrogen indices (HI ) are 
high (>400 mg hydrocarbon/g rock). In contrast, it is thermally mature in the deepest core (Ro values ~1.2%), with high TOC contents 
(as much as 8 wt%) but low HI values (<30 mg hydrocarbon/g rock). In addition, the KCF has intermediate HI and Ro values in other 
core samples. 
 
At least four distinct types of organic components were observed in petrographic and SEM analyses, which are, in decreasing 
abundance: 1) amorphous organic material admixed with clay platelets (as much as 20 μm long); 2) elongate (up to 300 μm) mat-like 
masses (micro-algal mat?) with small (<0.5 μm) quartz, feldspar, and clay entrained within it; 3) discrete particles (possibly alginate?); 
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and 4) Tasmanites microfossils. Regardless of depth and thermal maturity, the following observations were made of porosity in shales 
of the KCF. On ion-milled surfaces, there are irregular-shaped micropores and nanopores (0.1-0.01 μm across) in some mat-like 
masses, whereas regularly shaped micropores (up to 1 μm across) are in the discrete organic particles. Other types of pores, 
particularly interparticle (i.e., between illite flakes or platelets as well as between authigenic quartz euhedra), and intraparticle (i.e., 
between crystallites in framboidal pyrite) are also present and are noteworthy because they compose much of the observable porosity 
in the KCF shales. 
 
No systematic increase in organic porosity was observed in any organic material within the KCF with increasing depth and thermal 
maturity. As such, organic porosity does not contribute significantly to overall pore volume in the KCF, even in organic-rich shales 
that are thermally mature. Therefore, the petroleum storage potential in the formation appears to reside largely within interparticle and 
intraparticle pores between or within inorganic components of the shales, respectively.  
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