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Abstract 

 
Fractured basement reservoirs are challenging to model due to the complexity of processes involved in the generation and preservation of the 
fracture network as well as the heterogeneity of the host rock. This study demonstrates an integrated approach to model these unconventional 
reservoirs through the application of continuous fracture modeling (CFM) and discrete fracture network modeling (DFN). The main 
objectives of this workflow are to identify the potential flow contributing fractures and to reduce economic risks by optimizing the 
identification of new well targets.  
 
The first step in this workflow is to minimize the uncertainty in the identification of flow contributing fracture sets, which are estimated 
from: (1) the analyses of borehole images, sonic measurements, conventional log data, production and mud log data, (2) the laterolog 
resistivity, and (3) the semi-automated fracture trace extraction analysis generating P33 log (volume of fractures per volume of rock). Once 
the correlation between these three fracture indicators has been validated, the fracture intensity can be populated in the inter-well space.  
 
The next step is the selection of 3D properties that can be used to propagate the fracture flow indicator away from the wells. Fracture 
„drivers‟ used here are optimized post-stack seismic attributes (including Ant-Tracking), seismic inversion data and optimized 3D forward 
geomechanical properties. Then, 3D fracture intensity models (CFM) are constructed using a method based on artificial neural network 
methods (ANN).  
 
Finally, fracture properties are computed through DFN modeling. An advanced workflow was created to accurately estimate: fracture 
distribution, geometry and orientation with well data calibration. The DFN scale-up is then performed through a novel combination of Oda 
and flow-based methods that allow obtaining 3D porosity and permeability distribution. It is ensured that the scaled-up DFN model can 
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reproduce dynamic reservoir history such as that from well tests and production logs. The final calibrated model can be used to predict the 
flow rates and recovery of prospective wells. 
 

Introduction 

 
Naturally fractured reservoirs have been classified according to the relative contribution of the matrix and fractures to the total fluid 
production (Nelson, 2001). The different types of fractured reservoirs are: (1) Type 1 - Fractures provide essential porosity and permeability, 
(2) Type 2 - Fractures provide essential permeability, and (3) Type 3 - Fractures provide permeability assistance. Fractured basement 
reservoirs differ from other types of naturally fractured reservoirs in that they are generally considered to have no primary porosity (Le Van 
Hung et al., 2009) and are considered to be type 1 reservoirs. The most difficult problem after finding basement rock reservoirs is to evaluate 
them, particularly their production capacity and their reserves (Luthi, 2005). Often, in this environment, the majority of the wells drilled are 
highly deviated or horizontal, and drilled to intersect sub-vertical fault zones. To be productive, a well in this environment should encounter 
enough larger, permeable fractures which are sufficiently connected to the storage capacity of the reservoir (Le Van Hung et al., 2009). 
 
Our approach to continuous fracture modeling (CFM) is a method of 3D fracture modeling that maximizes the geosciences controls on 
predicting fracture intensity in the interwell space. The objective of the method is to identify the large permeable fractures which are 
necessary for a well to be productive and to model the fracture density in 3D using optimized fracture set(s) and optimized 3D parameters.  
 
In this article we describe the methods for detailed and robust analysis of borehole images. We also present a quantitative approach to select 
the fracture drivers from seismic and explain the method used to extend this information to the whole volume. The fracture model presented 
also uses geomechanical methods to predict the secondary deformation characteristics such as density and orientation of faults and joints. 
These outputs are combined with the fracture drivers from the seismic to build the fracture density model. Finally we discuss the discrete 
fracture network (DFN) modeling and the DFN and IFM upscaling which are the key steps in generating the properties describing fracture 
permeability and porosity. 
 

Fracture Classification and Interpretation 

 
Literature review reveals many examples of fracture classification in basement reservoirs. Each author advocates a different approach based 
on either descriptive morphologic criteria, such as continuous, discontinuous, solution enhanced fractures (vuggy), brecciated, etc. (Li et al., 
2004), or subjective aperture criteria, such as mega, major and minor and fracture density distribution function analysis (Tamagawa and 
Tezuka, 2004), or even both morphologic and aperture criteria combined (Tandom et al., 1999). Even if the fracture classifications are 
similar and tend to achieve the same objective, the definitions vary from one author to the next. Moreover, the assignment of morphologic 
criteria to a fracture is sometimes ambiguous on the image log. The reliability and consistency of fracture classification and interpretation 
will have significant impact on the fracture density curves used as basis for further analysis with other geological, geomechanical, and 
geophysical data. Since the fracture density data form the foundation of the characterization and modeling input, it is imperative to rely on 
good fracture density data and ensure that a reliable correlation with production indicators or flow zones is established before carrying it 



further into the modeling domain. The main issue with borehole image interpretation in the basement is: how can a „standard‟ and consistent 
fracture classification and interpretation be achieved? 
 
Among the possible solutions, we retained all the electrically conductive fractures (without differentiation between continuous, 
discontinuous and solution enhanced) and the results from another method based on recent research efforts and software development - the 
semi-automated fracture trace extraction method. This solution is based on image analysis principles applied to borehole images logs. The 
advantages of this method are the tremendous time savings and improved accuracy of fracture detection, which makes the interpretation 
results more objective and consistent along the borehole and fully repeatable. Segments extracted automatically from the image logs are 
synchronized with a stereonet, which enables working with and analyzing data by fracture sets. Upfront definition of classes of open 
fractures is not necessary. Based on our observation in the basement, the only and single necessary classification applied is the identification 
of drilling-induced fractures and differentiating them from natural fractures. 
This new approach discussed above has been tested on and evaluated with data from several wells from Vietnam and has been carried 
through a full analysis against indicators of flow or productive zones in the basement. 
 

Fracture Data Analysis 

 
Fracture data analysis is the second step in the reservoir characterization and modeling workflow. It consists of the determination of the 
types of fractures or fracture parameters that control the distribution and quality of flow zones. In our studies, we took three quantitative 
approaches which are described below:  
 
Method 1: Determination of the Fracture Indicator from Borehole Images, Sonic and Production Data 

 
After an objective and consistent interpretation of borehole images data is achieved, a detailed analysis of the fracture parameters versus 
production data (e.g. PLT) is required to identify a variable or a set of variables such as dip, azimuth, aperture, or density, controlling 
hydrocarbon flow. Fracture indicators such as production rates, index, production logging data, and Stoneley waveform analysis from sonic 
measurements, are combined with borehole images to flag the flow-contributing fracture zones. These measurements are defined as fracture 
indicators. This first technique has been used successfully in the past in the fractured basement from Vietnam (Tandom et al., 1999; Li et al., 
2004; Luthi, 2005). 
 
The first criterion to identify fracture sets is based on the fractures dip and azimuth. Several conventional diagrams are useful for defining 
the orientation distribution of fracture populations.  
 
The second criterion is based on fractures aperture. For example, for a specific case study from Vietnam, we took a quantitative approach in 
which resistivity-derived fracture aperture is used as an objective criterion to distinguish fractures. The combination with the aperture criteria 
offers quantitative parameterization to identify and select flow-contributing fractures for definition of reservoir intervals. 
 



The third criterion includes: (1) the caliper, which shows a slight enlargement in front of a fracture, (2) the deep and shallow resistivity logs 
that might show a separation larger than usual, (3) the barium in the drilling mud, which might invade a fracture and result in a higher 
photoelectric absorption or density reading (Narr et al., 2006), (4) the dipmeter tool rotation which can slow down, and (5) the sonic 
velocities (Donald and Bratton, 2006; Endo et al., 1998).  The set of fractures interpreted from log images is then compared qualitatively to 
the sonic measurements (Stoneley parameters) which provide a technique for evaluating the morphology and the permeability of fractures 
and compared with production data to identify and separate the fracture data into sets.  
 
Once the set of flow-contributing fractures has been identified, it is used in the form of a fracture intensity curve (Figure 1). Generation of 
intensity logs from fracture data is essential in the data analysis because the intensity curve describes the density of fractures per unit length 
and provides an input fracture distribution for the CFM. The intensity log is a virtual log connected to the interpreted fractures so that the 
data used in creating the log can be filtered during data analysis.  
 
Method 2: Determination of the Fracture Indicator from the Segment Extracted from the Semi-automatic Fracture Trace 

Extraction 

 
The workflow and benefits of fracture segment extraction are different from traditional fracture picking with sinusoids. Sinusoid fracture 
picking focuses on planar fractures. Fracture orientation analysis is properly addressed but fracture densities are highly dependent on the 
picking practice of the user. Fracture segment extraction detects all features regardless of their planarity. Fracture segment extraction is 
automated so long and short fractures are fully depicted. 
 
Consequently, fracture densities are more thoroughly computed even for non-planar features. As in the sinusoid-based method, fracture 
orientations are also computed. The extraction of segment in the image is based on morphology operations. Mathematical morphology is a 
non-linear theory that provides a tool for investigating geometric structure in images. Its objective is to analyze objects in the image 
according to their shape, their size, their neighborhood relationship, and their gray scale values. This approach is extremely efficient to solve 
problems that require shape analysis with speed constraints. Applying morphology operations, followed by a curve-fitting algorithm, a set of 
curves (polygonal lines) is extracted from the input image. 
 
In the case of drilling-induced fractures, the manual classification can be unreservedly used in the stereonet plot; this method provides a 
quick way to identify isolated clusters and quickly classify the concerning numerous segments in the segment set corresponding to drilling-
induced fractures. 
 
From the semi-automatic fracture trace extraction, different fracture densities can be extracted including:  
 
1) P10 is the number of fractures (defined as segment groups) by unit length of borehole (inverse length unit), 
 
2) P10C is the number of fractures (defined as segment groups) by unit length of borehole corrected for the orientation bias (i.e. angle 
between each planar fracture and the borehole axis) (inverse length unit),  



 
3) P21is the fracture (defined as segment group) length per unit area of borehole surface (inverse length unit),  
 
4) P30 is the number of fractures (defined as segment groups) per unit volume of borehole rock volume (inverse volume unit),  
 
5) P32 is the fracture (defined as segment group) area per unit volume of borehole rock volume (inverse length unit),  
 
6) P33 is the fracture (defined as segment group) volume per unit volume of borehole rock volume (porosity unit). 
 
From the different case studies performed in fractured basement reservoirs, it appears that the aperture is an important criterion to identify 
the flow-contributing fractures. The computation of the P32 log does not consider the aperture, whereas aperture is used to compute the P33 
log. This P33 density is the second fracture indicator used in our workflow. This new method has been tested in Vietnam and also in Yemen. 
Field data from basement reservoirs in Yemen show good correlations between the P33 density (fracture porosity) and the productive zones.  
 
Method 3: Determination of the Fracture Indicator from Laterolog Resistivity 

 
One of the limitations of image logs is that they can be sensitive to bad hole conditions.  Unfortunately, large fracture zones tend to be 
associated with borehole damage. To assist with the image interpretation, fracture aperture is also estimated from laterolog resistivity 
(Faivre, 1993; Sibbit, 1995; Wang et al., 1998). The cumulative fracture aperture over the measurement resolution of the tool is calibrated to 
match the image-based fracture aperture where the image data is reliable. The laterolog has good tolerance to bad hole conditions in a low-
porosity-matrix environment, so it complements image-based fracture aperture where the borehole is poor. It also provides a continuous 
fracture aperture estimate which includes all the electrically conductive fractures, including those which are too small, or too numerous to be 
accurately picked on the image logs. 
 
In this method (Hung et al., 2009), sonic logs are used to help in differentiating between permeable and clay-filled fractures. The Stoneley 
and dipole attenuation measurements are combined with the fracture aperture computed from resistivity (Figure 2). The fracture indicators 
from Stoneley measurements are affected by bad borehole, so it can be difficult to differentiate between a highly fractured zone from a bad 
hole. The dipole attenuation is much less affected by bad hole conditions, but is affected by dykes and lithology boundaries. 
 
All the fracture indicators discussed in this third method tend to be overly optimistic (prone to false positive fracture indication), but have 
different sensitivities to the borehole and lithology variation. On the other hand, none of these indicators are prone to false negative fracture 
indication. If any of the measurements indicates that there are no large aperture fractures, then it is very likely to be true. The petrophysical 
interpretation starts with either the resistivity, or image-derived apertures and eliminates all fractures not detected by both the Stoneley and 
dipole attenuation. This simple technique has proven to be very effective in isolating the large aperture, fluid-filled, fractures (Figure 3). 
 
 

 



Combination of Results from the Three Different Approaches 

 
The final step of the data analysis part of the workflow is a qualitative check and development of a quantitative correlation between the 
different indicators of flow-contributing fractures (Figure 4). The analysis of the fracture intensity (Method 1), P33 (Method 2), and flow 
indicator from laterolog resistivity (Method 3) shows in our example that these three fracture indicators are correlated both qualitatively and 
quantitatively. Once the correlation between the fracture indicators has been checked and validated, the fracture intensity can be used for 
modeling in the interwell space. 
 

Prediction of the Fracture Intensity in the Interwell Space 

 
The next step of the fracture data analysis consists of using the identified fracture set in the form of fracture intensity curve as a fracture flow 
indicator and finding a possible set of 3D properties that can be used to propagate the fracture flow indicator away from the wells. In this 
workflow, we evaluate all possible fracture drivers, defined as any 3D property that can be sensitive to or directly or indirectly captures 
fracture intensity information in the interwell space. Fracture drivers used in our workflow are post-stack seismic attributes, prestack seismic 
attributes, seismic inversion data and 3D forward geomechanical properties.  
 

Identification of the Best Fracture Drivers 

 

Post-stack Seismic Attributes  

 
The most frequently used fracture drivers in the case studies performed in Vietnam are post-stack seismic attributes. These include:  
 
•  Attributes derived from edge detection and direct fault/fracture detection of seismic discontinuity analysis and image processing 
techniques, which attributes include: variance, chaos, dip deviation, and ant tracking. 
 
•  Structural seismic attributes: flatness and curvature. 
 
•  Spectral attributes: seismic attributes that capture the frequency content of the seismic data. It is well known that distribution of fractures 
impact the frequency content of the seismic data by differential attenuation compared to intervals with no or fewer fractures. These attributes 
include: iso frequency attributes and T*attenuation attributes. 
 
•  Post-stack inversion attributes such as acoustic impedance and relative acoustic impedance. 
 
Ant tracking is a patent-protected technology (Figure 5) from Schlumberger that performs edge enhancement for the identification of faults, 
fractures and other linear anomalies within the seismic data volume. Swarm intelligence concepts are used for introducing a high number of 
agents (ants) into the data volume and evaluating the collective behavior of the swarm (Randen et al., 2001; Pedersen et al., 2002). Most of 
the time, this approach gives successful results in naturally fractured reservoirs for populating the fracture intensity in the inter-well space. 



 
This workflow enables us to consider and weigh all possible fracture drivers that are extracted along the existing borehole in the form of a 
pseudo-log. These pseudo-logs of seismic attributes are then used as input to a multi-scale statistical correlation analysis in which fracture 
flow indicators/intensity curves are compared to seismic attributes (Figure 6). Because the seismic domain comes with inherent resolution 
limitations compared to borehole data, a multi-scale analysis is required. The fracture flow indicator in the form of fracture intensity curves 
is generated with different window filter sizes to evaluate the best scaling factor for optimizing the correlation with the seismic domain. 
 
Geomechanical Attributes 

 
The 3D seismic data in fractured basement reservoirs can sometimes be challenging to interpret and allow identifying only the main faults 
affecting the naturally fractured reservoirs. Moreover, natural fractures such as small-scale faults and joints are known to be capable of 
significantly altering the flow of hydrocarbons and are below the resolution of the seismic data in this type of environment. Maerten, 2000, 
and Maerten et al., 1999 and 2006 demonstrate how geomechanical models based on elastic dislocation can be applied to improve the 
interpretation understanding and obtain more realistic reservoir models.  
 
Fractures form because rock cannot sustain the in-situ stress and are oriented according to the direction of principal stress. Tensile fractures 
propagate in a surface normal to the local direction of maximum tensile stress, and shear fractures propagate in one of the two surfaces 
parallel to the local direction of the intermediate principal stress and at a fixed angle to the local direction of most compressive stress 
(Bourne and Willemse, 2001). Once open, tensile fractures open in the direction of the least compressive stress and propagate perpendicular 
to this direction. Therefore, knowledge of the distribution of stress magnitude and direction throughout a rock body can be used to predict 
the distribution and orientation of fractures.  
 
The stress field responsible for reservoir fracturing can be calculated using geomechanics. Brittle fractures form where this stress field 
exceeds the local material strength as characterized by the brittle failure envelope for both tensile and shear fractures (Bourne et al., 2000). 
Poly3D is a 3D boundary element program and its graphic user interface written to calculate the displacements, strains and stresses in an 
elastic whole- or half-space using planar, polygonal-shaped elements of displacement discontinuity (Figure 7). Poly3D solves the equations 
of linear elasticity by representing fault surfaces with a series of triangle elements, each of constant slip. Geologically, a polygonal element 
may represent some portion, or all, of a fracture or fault surface. Because the displacement discontinuity (joint aperture or fault slip) is 
constant on each element, one can use more than one element to model a fracture or fault with a non-uniform opening and/or slip 
distribution. Elements also may be joined together to form a closed surface. The discretization of a three-dimensional fault surface into 
polygonal boundary elements allows the construction of a surface with any desired tipline shape. Boundary conditions, i.e. displacement 
discontinuities or tractions, can be prescribed locally at the center of each element according to the local coordinate system attached to the 
element. Additionally, remote stresses and/or strains can be prescribed. Outputs at observation points can be displacements, stain, stress, 
principal strain and/or principal stresses (Maerten, 2010). 
 
The methodology to model subsurface small-scale fractures consists of calculating the stress distribution at the time of the fracturing using 
the available reservoir data such as faults, fractures and fold, rock properties and tectonic settings that can be characterized by stress or strain 



magnitude and orientation. Geomechanical models are created to calibrate the 3D structural model, the applied tectonic loads, and the 
boundary conditions. Based on the first results, a second set of models are created to predict the secondary deformation characteristics (i.e. 
density and orientation of fractures). The results are then compared with the fracture data available along the wells.  
 
Remark 

 
The two main factors that allow quantitative modeling of fracture reactivation are the geometry of pre-existing natural fractures and the 
present day perturbed stress (Maerten, 2010). As it was shown by Tamagawa and Pollard (2008) in fractured basement reservoir from 
Yufutsu Field, Japan, non-productive wells were drilled in the area where the regional stress prevails, and the most productive well 
penetrated the area near the tips of active faults, where the stress concentration leads to enhancements in fracture permeability by opening 
and shearing. The prediction of fracture reactivation under the present day stress field is part of the workflow presented here. 
 

Fracture Intensity Prediction 

 
In the end, all possible fracture drivers - seismic attributes and geomechanical properties - are compared simultaneously and quantitatively 
with fractures flow indicators, along the wells, having different filtering scale parameters. From that analysis, the best possible fracture 
drivers are selected. 
 
Neural networks are then used to define the relationships between the ensemble of high-ranked drivers, here ant tracking and flatness (Figure 
8), considered in the previous example as best fracture drivers, by finding the underlying complex relationships that exist between the 
fracture indicator and fracture drivers at the wells. The output of the artificial neural network is an estimated fracture intensity property in 3D 
space. The final modeling step consists of using the estimated fracture intensity 3D property as an input to collocated co-kriging and 
sequential gaussian simulation to generate a three-dimensional fracture intensity model that fully honors well data (Figure 8). By combining 
multiple realizations, probability or confidence maps are constructed to predict those parts of the reservoir that are most intensely fractured. 
Based on this result, new well targets and optimized well paths can be defined. 
 

Permeability and Porosity Modeling 

 
DFN Modeling 

 
The second step of the fracture modeling process is the fracture network modeling. In our workflow, the description of fractured basement 
reservoir relies on DFN and IFM (implicit fracture modeling) modeling as shown in Figure 9 (Souche et al., 2009). The DFN model 
represents fractures, joints and faults as planar surfaces in three dimensions. The DFN (large reservoir-scale fractures) representation has the 
following advantages: (1) it provides a geologically sound representation based on physically measurable parameters (fracture orientation, 
length, aperture) and the means for upscaling is to a dual medium model that can be simulated using traditional finite difference simulators, 
(2) it allows representing large elements such as faults or fracture corridors that span through several simulation grid blocks and therefore to 
assess the large scale connectivity of the reservoir, (3) it is a stochastic representation that can be used to estimate the uncertainty and the 



heterogeneity of the output variables (fracture porosity, permeability, etc.). Since the input parameters (fracture density, orientation) are 3D 
properties, it also captures the variability of these variables at the reservoir scale. 
 
The implicit fracture model (small-scale) is a model of a fracture network in which each of the parameters necessary to describe the 
geometry and the properties of the fractures are represented by probability distribution functions. It uses a geostatistical approach to model 
small-scale fractures, which can be contributing to local vertical heterogeneity. 
 
In the DFN model, each fracture surface has individual attributes of permeability, compressibility, and aperture. The size, spatial location, 
intensity, and orientation of these surfaces are important and accounted for. Three main parameters are estimated to run the DFN model: the 
fracture distribution, geometry, and orientation. Because of the amount of information available at a well location, the DFN workflow and 
especially the identification of the fracture length and aperture have been developed to optimize the use of the well data. The key innovative 
points are the fracture length estimation from the borehole images and the fracture length/aperture relationship analysis to estimate the 
aperture of the individual fracture plane generated by the DFN. 
 
How to optimize the identification of these three main parameters? 
 
Fracture Distribution 

 
A correct fracture density measurement is crucial in the DFN model generation, to be able to quantify the fracture intensity in a 3D grid. The 
fracture modeling results (Figure 8) can be used as input for the DFN model to define the density distribution. This property, described 
earlier, is computed from optimized fracture intensity curves from the well data and optimized fracture drivers from 3D seismic data 
(combined with other fracture drivers if available).  
 
Fracture Geometry 

 
In fractured basement reservoirs, one of the most challenging parameters to define for the DFN model is the fracture geometry, which 
includes the length distributions. To reduce the uncertainty in the evaluation of this parameter, an innovative method has been tested. It 
consists of statistical modeling of fracture extensions from borehole image logs. The mean fracture length can be estimated from fracture 
intersections statistics on borehole images.  
 
Fracture Orientation 

 
Finally, the orientation of the fractures in terms of dip angle and azimuth is defined according to the well data; the choice of the distribution 
is done on the stereonet of the sets of potential flow contributing fractures with specific orientation. A different orientation is defined for 
each fracture set. 
 



Aperture is the most widely relied on measure for fracture “openness” which again is related to fluid flow and permeability. However, it is 
an uncertain parameter which is investigated for each reservoir individually. The aperture used in the model is based mainly on borehole 
images interpretation and fracture aperture computation from laterolog resistivity. The individual fracture permeability relies on the data 
available in the basement reservoirs and is calibrated to production data/flow measurements and to well tests when they are available or is 
related to the “cubic law” if no other measures are available. 
 

DFN Upscaling 

 
A DFN model is made with some fracture network attributes, as described above. However, for practical purposes in dynamic reservoir 
models, these are not useful until they are upscaled into the required grid properties that can be used for simulation.  
 
Two methods are used for upscaling the permeability. The method proposed by Oda relies primarily on the geometry of the DFN to build the 
permeability tensor. It is fast and yields satisfactory values, but it generally needs to be calibrated to reproduce effective properties that have 
been independently derived. It is based on the total area of fractures in each cell. The second method is flow-based upscaling, which uses a 
finite element code to run three small-scale flow simulations per coarse cell directly on the DFN model. It is much slower but provides 
accurate results, and also provides the permeability tensor. 
 
Fracture intensity model, porosity and permeability models can finally be used together to accurately predict new well targets (Figure 10) 
and the flow rates and recovery of prospective wells in fractured basement reservoirs. 
 

Conclusion 

 
Continuous fracture modeling relies on robust and consistent borehole image interpretation of fractures. This is achieved first by a readily 
accomplished classification of fractures into drilling-induced and natural fractures. The next step is to identify the fractures that contribute to 
flow based on fracture aperture and connectivity criteria. Based on this optimized fracture indicator, seismic poststack attributes are analyzed 
as potential fracture drivers. 
 
The fracture models presented here also use geomechanical methods to predict the field-scale distribution of fractures that affect flow. The 
methodology for the geomechanical model includes different steps: (1) model configuration (fault geometry, tectonic load, rock properties, 
and boundary conditions), (2) 3D model validation, (3) boundary condition calibration (comparison with well data), and 4) prediction of the 
fractures associated with the main tectonic events. By modeling the physical processes responsible for fractures, more meaningful and 
realistic fracture systems can be predicted. This additional approach is also especially useful in fractured basement reservoirs with low 
quality of seismic data.  
 
This workflow identifies the potential flow-contributing fractures by integrating borehole geology, petrophysical analyses, and seismic data. 
In addition, this solution provides a specific method to evaluate the fracture distribution, geometry, and orientation to match the well data 
and to obtain a realistic statistical image of the fracture network representing the subsurface.  



 
Finally, the integrated approach of DFN and IFM modeling allows the analyst to improve the realistic representation of complex fracture 
system geometry and connectivity. It is a stochastic representation that can be used to estimate the uncertainty and the heterogeneity of the 
output variables (fracture porosity, permeability, etc.). Since the input parameters (fracture density, orientation) are 3D properties, it also 
captures the variability of these parameters at the reservoir scale. 
 
In hydrocarbon reservoirs, fracture reactivation can have a significant effect on flow properties. Prediction of fracture reactivation (opening 
and shearing) under the current stress field can be performed with this workflow.  
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Figure 1. The full set of fractures in fractured basement reservoirs is not contributing to the flow. One part can contribute to the storage 
capacity and the other part can contribute to the flow. To optimize new well targets, the objective is to identify the flow-contributing 
fractures. In this example, tadpoles of all the conductive fractures picked from borehole images are represented on the track 1, and the 
tadpoles of the fractures which contribute to the flow are represented on the track 2. From this last set of fractures, a fracture intensity curve 
is computed (track 3). The fracture intensity (called also P32) is used as input for the 3D fracture modeling. 



                                              
 
Figure 2. All measurements sensitive to fractures are prone to false positive fracture indications, but rarely to false negative indications. 
They also have different sensitivities to other factors such as the borehole condition or lithology. In zones where all the indicators agree, the 
fractures are likely to be open and permeable. In this case the interpretation predicts that most of the production should come from three 
main intervals: (1) 665 to 690 m, (2) ~725 m, (3) ~760 m with the larger portion coming from the first zone. In tracks 7 and 8 the filtered 
fracture apertures from resistivity (red curve) and image logs (black dots) are respectively presented. Tracks 9 and 10 show the permeability 
computed using the apertures (Endo et al., 1998). 



                                          
 
Figure 3. Production logs are compared to the log interpretation. Two-phase flow is observed only at the bottom most fractured zone (760 
m). The shallowest water is observed at 700 m during the 28/64 inch flowing survey. This is trapped water due to wash out at that depth. The 
major entry points are correctly predicted by the static log interpretation. However, the relative contributions are different with zones 2 and 3 
providing most of the production. This shows that fracture aperture is not the only factor affecting the production rate. The degree of 
connectivity to the rest of the reservoir, and fracture geometry, are also important factors (Endo et al., 1998). 



 
 
 
 
 
 
 
 
 
 

 
 
Figure 4. The fracture indicators computed by the different techniques are first compared qualitatively and then quantitatively. This example 
from a well in fractured basement from Vietnam correlates three fracture indicators: (1) fracture intensity computed from the comparison 
between borehole images, sonic data, production data/mud losses/gas show, (2) the fracture intensity computed from the laterolog resistivity, 
and (3) the porosity (P33) computed from the borehole images. The minimum correlation coefficients are 0.8. 



 

 
 
Figure 5. Ant-tracking workflow. The first step enhances the spatial discontinuities in the seismic data (fault attribute generation), and the 
second step significantly improves the fault attributes by suppressing noise and remains of non-faulting events. This is achieved by the 
cooperative behavior of thousands of “artificial ants”. In the sketch above, one or more attribute cubes (b) is generated from the seismic cube 
(a). The attribute is then conditioned, and from the resulting cube (c), the fault surfaces are extracted as separate objects (d). An example 
from fractured basement reservoir from Vietnam is presented on the right. 



 
 

 
 
Figure 6. With this approach of a CFM workflow, an optimized set of key seismic attributes is identified qualitatively along the well path 
(top) and quantitatively via correlation coefficient analysis (bottom). In this example from fractured basement reservoirs, the ant tracking and 
flatness attributes are the best fracture drivers. This set is then used to constrain the propagation of fracture intensity away from the wells.  



 
 
Figure 7. Construction of a complex fault geometry using triangular elements and schematic representation of a surrounding observation 
grid. Boundary conditions on triangular elements are a combination of displacement and traction. At each observation point, displacement, 
strain and stress can be computed as a post-process. Also shown is the 3D remote stress/strain (Maerten, 2010). 



 

 
 
Figure 8. The result of the CFM is a 3D distribution of the flow-contributing fractures. From this 3D property, sweet spots with the highest 
fracture intensity can be highlighted. From the fractured basement example illustrated here, the purple color highlights the lowest intensity of 
potential flow-contributing fractures whereas the red color highlights the highest intensity. These red sweet spots are the main focus in 
planning new well targets. 



 
 
Figure 9. DFN and IFM modeling of large reservoir-scale and smaller-scale fractures (Souche et al., 2009). In the fracture network modeling 
process, there is a separation threshold that defines which fractures will be modeled discretely and implicitly. All fractures with length 
between zero and the given threshold will be modeled implicitly (as properties), while all fractures with lengths between threshold and the 
maximum length will be represented by discrete fractures (as planes). 



     
 
Figure 10. General fractured reservoir modeling workflow to identify new well target. It includes the following workflows: (1) best fracture 
indicators identification considering well data, production data, mud losses, and dynamic data, (2) best seismic attributes identification 
(green), (3) geomechanical property computation (blue), and (4) fracture modeling via CFM (pink) and DFN (red). 


