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Abstract 
 
Pore pressure data and sonic velocity-vertical effective stress plots from 31 wells reveal that overpressures in the northern Malay 
Basin are primarily generated by fluid expansion and located basin-wide within the 2A, 2B and 2C source rock formations. 
Overpressure magnitude increases towards the basin-centre, with maximum pore pressure gradients of >19.0 MPa/km observed in the 
southeast part of the study area. The overpressures are predominately associated with gas, with gas sampled in over 83% of 
overpressure measurements. The association of overpressures with gas, combined with a regional geology that largely precludes other 
fluid expansion overpressure mechanisms, provides the first convincing in-situ evidence for basin-wide gas generation overpressure.  
 
Overpressure magnitude analysis indicates that gas generation accounts for approximately 46-67% of the measured excess pore 
pressure in the region, with the remaining 33-54% being generated by coincident disequilibrium compaction. Thus, the data herein 
suggests that gas generation, if acting in isolation, produces a maximum pressure gradient of 15.2 MPa/km (0.672 psi/ft), and not 
lithostatic magnitudes as is often hypothesized. The gas generation overpressures in this study are not associated with a significant 
porosity anomaly and thus represent a major drilling hazard, with traditional pore pressure prediction techniques underestimating 
pressure gradients by 2.3 ±1.5 MPa/km (0.102 ±0.066 psi/ft). However, pore pressure prediction is possible using a modified approach 
after careful smoothing and picking of velocity data. 
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in the Northern Malay Basin 



  

• Pore pressure estimated from the 
porosity anomaly often associated 
with overpressure. 
 

• ‘Undercompaction’ only associated 
with disequilibrium compaction. 
 

• Other overpressure mechanisms 
have no/little porosity anomaly – 
pore pressure underestimated. 

Example of undercompaction associated 
with overpressures, offshore Brunei. 
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Overpressure Origins? 
 

• Disequilibrium compaction (most common). 

• Smectite-Illite (and other diagenetic processes), gas 
maturation, aquathermal expansion, lateral transfer, load 
transfer, vertical transfer. 

• Gas maturation often hypothesized to generate high 
magnitude pressures – rarely shown in-situ or regionally. 
 

Overpressure mechanisms affect rocks in different 
ways – we need to first understand overpressure 

generation mechanism to reliably predict pore pressure 
(and avoid potential disastrous consequences). 

 

 



"South 
} China 
. Sea 

A .1. .' 
./ .... 

.' · .' · .' · .' ~ 
• • -...... 

. ' 

Philippine 
Sea plate 



Geological Overview 
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Data Summary 

• 990 WFTs, 20 DSTs, mud weights, formations, 
petrophysical log and pore fluid data provided for 35 
wells throughout Northern Malay Basin (Thailand 
section). 

 

• Overpressures (WFT/DST >11.5 MPa/km or >0.51 psi/ft) 
in 27 wells (in southeast of study area). 

 

• Moderate-high magnitude overpressures (>14.0 MPa/km 
or > 0.62 psi/ft) observed in 14 wells. 

 

• Overpressures observed in formations 2C, 2B and 2A. 
 



Overpressure 
Distribution and 

Magnitude 

• Overpressures 
(red) in southeast 
of study area 
 

• Overpressures 
not observed in 
northwest (blue) 
 

• Pressures greater 
in magnitude 
towards southeast Location of wells & maximum 

pressure gradient (MPa/km) 



Typical Overpressured Well Profiles 
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Typical Overpressure Profile 

• Whilst magnitude varies, pressures 
tend to follow the same profile with 
depth: 

 top overpressure at/near top of 2C Fm; 
 approximately constant gradient 

through 2C, 2B, upper 2A formations;  
 return to hydrostatic near base 2A Fm. 

 
• Some minor overpressures in base 
2D and top fm 1 (vertical transfer?). 
 
• Overpressure magnitude appears 
inversely proportional to net-to-gross. 

Schematic of typical pore pressure 
trend with depth and formation. 
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Determining Overpressure Origin: Porosity-Effective Stress Plots 
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Overpressured RFTs (285) 

Normally  
pressured RFTs 
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Sonic Velocity-Vertical Effective Stress: by Formation 
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Sonic Velocity-Vertical Effective Stress: by Formation 

Loading curve 

(FM2 and FM3) 

2A Normally 
Pressured 

2A Overpressured 
 FM 2C, 2B, 2A Summary:  

• Overpressures in 2C, 2B 
and 2A formations plot 
mostly ‘off’ of the loading 
curve. 

 

• Indicates that some of 
overpressure generated 
by a fluid expansion or 
transfer mechanism. 
 



Sonic Velocity-Vertical Effective Stress: by Magnitude 

• Higher magnitude 
overpressures lie 
further off of the 
loading curve. 
 
•Further indication that 
significant component 
of overpressure is 
generated by a fluid 
expansion mechanism. 



Overpressure Origin 
Summary:  

 

• Significant component 
generated by fluid 
expansion – but which 
mechanism? 
 

• Low smectite content, 
stratigraphically 
confined to low net-to-
gross sequences: 
smectite-to-illite and 
load, vertical or lateral 
transfer unlikely.  



Sonic Velocity-Density Cross Plots 

Adapted from 
Hoesni, 2004 and 

O’Conner et al., 2011 
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Sonic Velocity-Density Cross Plots 
  

• Classic gas 
generation 
signature with 
increasing and 
decreasing 
pressure gradient 

 

• Sediments still 
compacting with 
increasing depth 



Sonic Velocity-Vertical 
Effective Stress – Fluid Type 

  

• 84% of all overpressured RFT 
measurements sampled gas 
(c.f. 60% normally pressured). 

 

• Fm 2 A-C is source rock for 
most produced hydrocarbons. 
 

• Suggests kerogen-to-gas 
maturation as likely dominant 
overpressure cause in 2A-C. 
 

• Some other overpressure, 
likely disequilibrium 
compaction (on loading curve). 



Evidence for Disequilibrium Compaction? 

  

• Evidence of undercompaction, especially towards basin centre 

 

  

• All overpressure requires a good seal – but if seal exists during 
burial or loading, disequilibrium compaction should also occur! 
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How Much Gas Generation Overpressure?  

• ‘Distance’ from 
loading curve less 
than amount of 
overpressure 
 

• Magnitude of gas 
overpressure 
increases towards 
basin centre. 
 

• Proportion of gas  
overpressure 
decreases towards 
basin centre. 
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Implications for Pore Pressure Prediction 
 Overpressures often do not have a significant 

porosity anomaly and difficult to predict! 
 
 Typical pore pressure prediction methods all 

underestimate pore pressure gradient. 
   
 Underestimation significant - generally by 1.0 to 4.0 

MPa/km (0.04 to 0.17 psi/ft or 0.8 to 3.3 ppg). 
 
 Worse in high pressure areas – numerous drilling 

problems observed. 
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Summary 
• Overpressures primarily occur in the 2C, 2B and 2A formations in 

the SE part of the North Malay Basin. 
 

• Overpressures lie significantly off loading curve, suggesting 
component of overpressure generated by fluid expansion. 

 

• Stratigraphic confinement to source rocks and association with 
gas suggests probable kerogen-to-gas maturation overpressure. 

 

• Disequilibrium compaction also occurs, particularly in deeper, 
rapidly deposited regions towards basin centre (into Malaysia?). 

 

• Overpressures in formations 2A-C are NOT associated with large 
porosity or sonic velocity anomaly – potential dangerous 
underprediction using usual methods! 

• Potential for HP/HT stratigraphic gas plays towards basin centre. 
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