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Abstract 
 
Effective porosity and hydrocarbon saturation prediction away from the well is essential to characterize reservoir effectively. Precise 
prediction of those parameters is a challenging task because of the non-uniqueness in its relationship with conventional seismic 
attributes. Again quantitative prediction of hydrocarbon saturation from seismic is ambiguous because of their independent nonlinear 
relationship particularly with amplitude, impedance etc. However, a property which is product of effective porosity multiplied by 
hydrocarbon saturation, named as ‘Gas Volume’ or ‘Bulk Gas Volume’, has a major effect on seismic amplitude than individual effect. 
In a complex geological setup with greater degree of heterogeneity in reservoir properties further intensifies the challenge of 
characterizing the reservoir based on individual seismic attribute. In the present case, major channel-levee complexes associated with 
smaller episodes of channel-cut-fill and migration has made the study area a geologically complex one. In the present study, a special 
approach has been adopted which combines multi-attribute linear regression with Probabilistic Neural Network (PNN) technology to 
predict Gas Volume. The predicted property has been found to contain finer detail amenable not only for better delineation of 
hydrocarbon-saturated reservoir in 3D space but also its usage as an input for further quantitative reservoir characterization. 
 

Introduction 
 
The study area is a gas field in a clastic reservoir situated in the deep waters of east coast of India. The reservoir stratigraphy 
comprises a heterogeneous succession of sandstones and mudstones organized into a composite upward fining profile. Component 
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sand bodies are dominated by laterally amalgamated channels, sinuous channels and channel with splays, and are interpreted to be the 
products of deepwater, gravity-flow processes. Above a basal incision surface, the reservoir is highly sand-prone and comprises 
laterally amalgamated channels. The medial section of the reservoir is more aggradational and exhibits laterally isolated and sinuous 
channels. Within the upper part of the reservoir, channels are smaller, straighter and built of individual channels with frontal splay 
elements. Shale and thin-bedded facies become an increasingly important component of the stratigraphy in the upper parts of the 
reservoir. The main channel is buried by a prograding slope succession. 
 
In this complex geological setup, both horizontal and vertical heterogeneity has been observed to a great extent. Therefore, the 
challenge in this field was to capture the reservoir heterogeneity efficiently. Any direct method of determining the reservoir property 
using transform based on single property viz., amplitude, sweetness, P-Impedance etc. generates only an average outcome, devoid of 
finer details. 
 
Effective porosity and hydrocarbon saturation are two important parameters in contributing to the impedance contrast and seismic 
amplitude. However, rather than individually the combined effect of both the properties has the stronger influence to the seismic 
anomaly. Therefore, to enhance the effectiveness of the analysis a special attribute that is a product of effective porosity and 
hydrocarbon saturation, named as ‘Gas Volume’, was predicted. Bulk Gas Volume is the fraction of rock volume composed of gas and 
is analogous to gas-in-place per unit rock volume. A method comprising of multi-attribute linear regression combined with 
Probabilistic Neural Network (PNN) was used for this study. The method derives a non-linear relationship between seismic data and 
its various attributes with Gas Volume (Russell et al, 2001; Leiphart and Hart, 2001). The applicability of the Gas Volume predicted 
using this method is found to be quite effective for further reservoir characterization and production planning operations. 
 

Method and Analysis of Results 
 
The input data used in the study were the effective porosity logs of 15 wells after converting them from depth to time at 2-ms 
sampling interval, full-stack seismic data volumes of 3-35º and seismic inversion volumes. Seismic inversion volumes were P-
impedance and Vp/Vs ratio volumes obtained from simultaneous angle dependant inversion result. 
 
The cross-plot between Effective Porosity and P-impedance shows a correlation coefficient of 0.5 (Figure 1) while that of Gas Volume 
and P-impedance shows a correlation coefficient of 0.58 (Figure 2). As the Gas Volume exhibit enhanced interdependence with 
seismic and superior ability to delineate hydrocarbon-saturated sand, the authors attempted to estimate the Gas Volume in 3D space 
away from the well. 



 
Presently, there are several methods available in the industry for predicting different reservoir properties, namely single-attribute 
regression, multi-attribute regression, 
Probabilistic Neural Network (Russell et al., 1997; Liu and Liu, 1998; Hampson et al., 2001; Leiphart and Hart, 2001; Walls et al., 
2002) etc. In this present study, it has been observed that multi-attribute regression and PNN was more effective in predicting Gas 
Volume over single attribute regression. The following steps illustrate the effectiveness of multi-attribute regression and PNN in 
predicting the Gas Volume away from the well with greater accuracy. 
 
First, single-attribute regression was performed to the data. Out of all the attributes, inverse of Vp/Vs ratio gave highest correlation 
with Gas Volume with a coefficient of 0.64. Cross plot between Vp/Vs ratio and Gas Volume is shown in Figure 3. It is observed that 
there is a large scatter of data points and the correlation coefficient is not good enough for further analysis. 
 
Then a method was adopted that combines multi-attribute regression and probabilistic Neural Network (PNN) to derive a suitable 
relationship for predicting Gas Volume (Hampson et al., 2001). A multi-attribute stepwise linear regression analysis was performed 
using Gas Volume log at fifteen well locations. Convolution operator length has been chosen using the cross-validation criteria. 
Validation correlation is computed by excluding one well at a time from the training data set, calculating correlation at that well and 
making average of the correlations after repeating the procedure for all the wells. 
 
Figure 4 shows the plot of validation error against the number of attributes for the different operator lengths. The plot illustrates that a 
thirteen-point operator gave the minimum validation error with 12 attributes. The attributes were 1/(Vp/Vs), 1/(P-impedance), 
Integrated absolute amplitude of seismic, Amplitude Envelope (P-impedance), Instantaneous Phase of seismic, Integrate (Vp/Vs), 
Average Frequency (Vp/Vs), Apparent Polarity (Vp/Vs), Instantaneous Frequency (P-impedance), Integrate (P-impedance), Cosine 
Instantaneous Phase of seismic and Amplitude Envelope (Vp/Vs). The network derived from the multi-attribute linear regression gave 
an average correlation of 80%. Figure 5 shows the cross-plot between the actual and predicted Gas Volume after multi-attribute 
regression. We observed that scattering of the data points in the cross-plot has been reduced considerably compared to the single-
attribute regression. 
 
Then PNN was performed, cascading with the trend from the multi-attribute linear regression after applying a smoother length of 50 
samples to the transform. After PNN, average correlation has been increased to 92% while validation correlation was estimated as 
75%. Figure 6 shows the cross-plot between actual and predicted porosity at the well locations after applying PNN. We observed that 
using PNN, scattering of the data points in the cross-plot has been further reduced compared to the multi-attribute approach. 



 
The match between actual and predicted effective porosity for the first three wells (A, B and C) and has been shown in Figure 7 and 
Figure 8. The well P has been used as a blind well. The match between actual and predicted Gas Volume at the well P is shown in 
Figure 8. Gas Volume sections along the well A, B, C and P are shown in Figure 9, Figure 10, Figure 11 and Figure 12. 
 

Discussion 
 
Gas Volume is a seismically well correlatable reservoir property, which is a good representation of hydrocarbon-saturated sand. Multi-
attribute regression and PNN analysis has predicted the Gas Volume with good accuracy. Excellent match at the validation well P 
illustrates the superiority of this method. This Gas Volume has helped in delineating the reservoir away from the well in a much better 
way and to place the infill development wells. Again, this attribute as an input has helped in further quantitative reservoir 
characterization. 
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Figure 1. Cross-plot between effective porosity and P-impedance. Figure 2. Cross-plot between Gas Volume and P-impedance. 
 
 

  



 
 

                 Figure 3. Cross-plot between Gas Volume and Vp/Vs ratio.   Figure 4. Plot of validation error vs. attributes for different operator length. 
 

  



 
 

                 Figure 5. Cross-plot between the actual and predicted gas 
         volume after multi-attribute regression. 

    Figure 6. Cross-plot between the actual and predicted Gas 
                                 Volume after PNN. 

 
 

  



 
 

    Figure 7. (left) Match between actual (black) and predicted (red)  
effective porosity after PNN for the wells A and B. 

    Figure 8. (right) Match between actual (black) and predicted (red)  
effective porosity after PNN for the wells C and P. 

 
 

  



 
 

            Figure 9. Section view of Gas Volume along with actual log 
 at the well A after PNN. 

Figure 10. Section view of Gas Volume along with actual log  
at the well B after PNN. 

 
 

  



 
 

             Figure 11. Section view of Gas Volume along with actual log  
at the well C after PNN. 

Figure 12. Section view of Gas Volume along with actual log  
at the well P after PNN. 
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