
Next-generation Geological Model Updating and Ranking for Improved Oil Recovery* 
 

Marko Maucec
1
, Gustavo Carvajal

2
, Ajay Singh

2
, and Seyed Mirzadeh

2
 

 

Search and Discovery Article #41089 (2012)** 
Posted November 30, 2012 

 

 

*Adapted from oral presentation at AAPG International Conference and Exhibition, Singapore, September 16-19, 2012 

**AAPG © 2012 Serial rights given by author. For all other rights contact author directly. 

 

 
1
HALLIBURTON, Consulting & Project Management, Kuala Lumpur, Malaysia (marko.maucec@halliburton.com) 

2 
HALLIBURTON, Consulting & Project Management, Houston, TX  

 

Abstract 

 

The conventional oil production practices recover, on average, approximately one third of the original oil in place with estimated remaining 

mobile oil. To increase the overall production, large investments are made in Improved Oil Recovery (IOR) of which success greatly depends 

on the ability to estimate volumes and locations of bypassed oil from available historical data using History Matching techniques. We present 

a new approach with the potential to more accurately capture uncertainty of the inherent geological model, facilitate accurate description of 

reservoir heterogeneities and honor the conceptual depositional model. 

 

The novelty lies in direct interfacing between Next-generation geological modeling and forward simulator. Efficient model parameterization 

that enables rapid generation of model updates in wave-number domain is used to characterize the main features of geologic uncertainty 

space: structural, stratigraphic, facies and petrophysical properties. Model inversion workflow is based on multi-step Bayesian Markov chain 

Monte Carlo (MCMC). Traditional MCMC methods provide most rigorous sampling of posterior distribution but suffer from high 

computational cost. We implement an approach where proxy model is guided by streamline-based sensitivities, dispensing with the need to 

run forward simulation for every model realization, thus significantly reducing the computation time. An ensemble of sufficiently diverse 

model realizations is generated at the high-resolution geological scale that secures more accurate results by obeying known geostatistics and 

well constraints. 

 

The workflow is validated on a case-study combining geological model with ~1M cells, four different depositional environments and 30 wells 

with 10-year water-flood history. A history match indicates significant reduction in the misfit between observed and simulated water-cut 

curves, even for producers with difficult non-monotonic behavior. 

 



Finally, the method is described to rank dynamically the reconciled model realizations for identifying the highest potential, to capture 

bypassed oil and implement IOR solutions. The main features include use of fast streamline simulations to calculate dynamic model responses 

(e.g. recovery factors), evaluate their dissimilarity with pattern-recognition techniques and assigning of a few realizations, representative for 

production forecasting, to full-physics simulation. 
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 Objective… 

 Uncertainty in Geological Models 

 History Matching and Uncertainty Management 

 Next-generation Geological Modeling 

 Model Parameterization and Reduction 

 Model Inversion:  

  Multi-stage Markov chain Monte Carlo… 

  Validation 

 Dynamic Model Ranking 

  Validation 

 Summary & Conclusions 
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Outline 
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• Minimum or no model up-scaling,  

• Include multiple types/scales of data 

and 1st order effects, 

• Capture full range of outcomes, 

• Reduce analysis & decision time. 

All-in-one  

Uncertainty Quantification Workflow 

fully integrated on a unified database 

Coupling Geo-modeling, Reservoir modeling, 
Wells and Surface Network Models in... 

Objective… 
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Geo-cellular model 

1 

Seismic constraints 

2 

Updates:  

production data, 4D seismic, logs… 

5 

… Big-loop Reservoir Management 
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Dynamic data: 

reservoir, wells, facilities… 
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Ranking, 

decisions, 

actions 
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Cluster data

All data 
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4 Uncertainty 



Uncertainty in Geological Models 
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(HRGM) 

High Resolution 
Geological Model 

Petrophysical 
Model 

Facies 
Model 

Stratigraphic 
Model 

Structural 
Model Higher 

Lower 

Uncertainty impact 

Structural model 
defines gross volumes 

Stratigraphic model 
layering controls lateral connectivity 

variogram range controls vertical connectivity 

Facies model 
controls depositional continuity 

Petrophysical model 
defines property distribution 
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m = model     d = data     g = simulator 
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Bayesian inference: assessing parameter uncertainty 
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History Matching in a nutshell… 
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… a systematic procedure of altering a reservoir simulation model to reproduce 

the dynamic field response by honoring geological constraints! 

… OBJECTIVE: Minimize the error between measured and simulated response! 

 

    
 

DATA USED: 
• Production data 

• Pressure data 

• Other (temp profiles, 

 saturation distribution…) 

 

The Future of AHM 

 Intelligent and intensive use of cluster 

computing. 

 Ensemble-based methods to capture 

model uncertainty. 

 Hierarchical ranking of model 

uncertainties. 

 Optimal model resolution. 
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Quantitative Uncertainty Management  

Dynamic 

Model  

Ranking 

Assisted  

History 

Matching 

Model parameterization 

High-resolution 

static model 

Streamline sensitivities 

Dynamic production 

data 

fw 

time 

tolerance 

PROBABILISTIC 

INVERSION 

History-matched models 
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Ranked HM-ed models 

Analysis & Ranking of HM-ed Models 

Forecast of Production 

Flow simulator 
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Next-generation Geological Modeling 

Stratigraphic modeling 

 Lithotype proportions: accurate and efficient 

representation of geological non-stationarity 

(trends) 

Facies modeling 

 Lithotype rules 

 

 

 

 

 

 

 

 

 

 

 Vertical Proportion Matrices: define how the facies 

behave vertically over the area of the reservoir 

    

    

Facies simulation 

 Geologically driven: ultra sophisticated, simple to 

use, combine different variagram model types, 

each exhibiting different anisotropic conditions. 
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Generation of Geo-model Realizations 
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Rules for Facies Simulation Statigraphic grid Rules for PP Simulation 

Next-generation Geo Modeling API 

Facies model Porosity model 

Challenges for AHM workflow 

 Preserve realism of high-resolution 

model. 

 Retain distribution of main features 

that have control over depositional 

connectivity, i.e. facies. 

 Perform FAST model updating.  

Model  

parameterization 
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Model Parameterization 

HIGHLIGHTS 

 

• Speed: wave-number approach 

eliminates the need for prior Cov 

matrix inversion 

 

• Geological realism: adheres to 

the geological detail of the initial 

static model.  

 

• Versatility: preserves low 

frequency moments of the image, 

which correspond to large features, 

e.g. facies 

 

• Statistical soundness: produces 

statistically unbiased prior model 

realization. 

 

• Flexibility: fully applicable to multi-

million-sized models.  

Initial log-perm  

model 

Log-perm maps, Brugge fluvial, top-layer, 9 realizations 
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Multi-stage Markov chain Monte Carlo (MCMC) - I 

Generate model realizations 

Calculate exact likelihood 

Generate new proposal 

Calculate approximate  

likelihood with sensitivities 

Forward simulation 

(response & sensitivities) 

Promote proposal 

Collect proposal 

Accepted? 

Convergence 

achieved? 

Calculate exact likelihood 

yes 

yes 

yes 

no 

no 

no 

Stage 1 

Stage 2 Accepted? 

Proxy Likelihood Model  

For a proposed transition 

  

the change in model parameters to the 

change in forward model response is 

related via streamline sensitivity matrix S: 

 

Streamline Sensitivities: derivatives of a 

streamline travel time with respect to model 

parameters e.g. permeability, porosity, BHP, 

fluid saturation…  

mδd S

immδm  *

© 2012 HALLIBURTON. ALL RIGHTS RESERVED. 



13 

Generate model realizations 

Calculate exact likelihood 

Generate new proposal 

Calculate approximate  

likelihood with sensitivities 

Forward simulation 

(response & sensitivities) 

Promote proposal 

Collect proposal 

Accepted? 

Convergence 

achieved? 

Calculate exact likelihood 

yes 

yes 

yes 

no 

no 

no 

Stage 1 

Stage 2 Accepted? 

Multi-stage Markov chain Monte Carlo (MCMC) - II 
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Acceptance Criterion – Stage 1 
 

Standard Metropolis - Hastings 

Acceptance Criterion – Stage 2 
 

Standard Metropolis - Hastings 
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Generate model realizations 

Calculate exact likelihood 

Generate new proposal 

Calculate approximate  

likelihood with sensitivities 

Forward simulation 

(response & sensitivities) 

Promote proposal 

Collect proposal 

Accepted? 

Convergence 

achieved? 

Calculate exact likelihood 

yes 

yes 

yes 

no 

no 

no 

Stage 1 

Stage 2 Accepted? 

Multi-stage Markov chain Monte Carlo (MCMC) - III 

Convergence diagnostics 

Entropy, S 

 
 

)|(log( || dmdmdm ppS 
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Interfacing Geological Modeling and Simulator 
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Model 

Realization 1 

Simulator 

run 1 

Sample 

OF model  

update 1 

Convergence test 

Node 1 Node 2 Node n 

Data analysis 

Model 

Realization 2 

Model 

Realization n 

Proxy 

Model 1 

Proxy 

Model 2 

Proxy 

Model n 

Sample 

OF model  

update 2 

Sample 

OF model  

update n 

Sample 

OF model  

update 1 

Sample 

OF model  

update 2 

Sample 

OF model  

update n 

…… 

…… 

…… 

…… 

…… 

…… 

Stage 1 

Stage 2 

Simulator 

run 2 

Simulator 

run n 

Simulator 

run 1 

Simulator 

run 2 

Simulator 

run n 

Next-generation geological model 

• Use of cluster and parallel CPU 

computation is imperative! 

• Considerable gains in effective 

computation time! 

• Example simulation: ~3h /w 1 Quad; 

~45 min /w 4 Quads.  

Reservoir (forward) simulation  

is most time consuming step! 
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Validation: benchmark model 

Facies realization 

• 4 depositional systems,1 fault 

• Grid: 211 x 76 x 56  ~900k cells 

• 20 producers, 10 injectors: all vertical, perforating through all 56 layers 

 Next-generation Geo-model: Brugge field 
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Water-cut Curves 

Posterior model realizations 

Prior model realizations 

prior / posterior  

model 

initial model 

observed data 
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Water-cut Curves: mean & variance 

prior model 

initial model 

observed data 

posterior model 

Variance 

Mean 
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Convergence Diagnostics 

Sample size (1500) 
 

 
 

Number of steps (30) 
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Ensemble size (50) 
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Conventional MCMC 

can be 4-5 times slower…! 

© 2012 HALLIBURTON. ALL RIGHTS RESERVED. 



20 

History-matched Permeability Models  

Layer 1 of three model realizations (log-perm scale). 

Prior 

model  

realization 

Posterior 

model  

realization 

Difference: 

posterior-prior  
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Dynamic Model Ranking - I 

E 

Post-MDS matrix with 

data-point map in Euclidean 

domain 

MDS 

Non-linear Euclidean 

domain 

E 

Kernel K-means 

Clustering  

= cluster centroids 

1 

2 3 

12 

23 

13 

Fast flow simulations 

on models 
Connectivity-distance 

matrix 

 



Tt

lkkl
RFRF 2)(

© 2012 HALLIBURTON. ALL RIGHTS RESERVED. 

… Assisted History Matching is inherently ill-posed and can generate non-geological 

realizations. Such models are NOT suitable for production forecasting! 

Modified from: 

Scheidt & Caers, 2009; 

Alpak et al., 2010. 

Full-physics 

simulation 
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Only model responses 

closest to cluster centroids in 

E domain are simulated with 

full-physics simulator to 

construct the URF cdf! 
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Dynamic Model Ranking - II 

Number of clusters =  11

 Validation: arbitrary “synthetic” dataset, with 100 recovery factor curves… 

5 10 15 20
70

75

80

85

90

95

Number of clusters

%
 o

f 
v

a
ri

a
n

c
e

2012 2014 2016 2018 2020
0

1

2

3

4

5

6

R
F

(%
)

years

6 7 8 9 10 11
0

0.2

0.4

0.6

0.8

1

URF (%)

C
u

m
u

la
ti

v
e
 d

e
n

s
it

y
 f

u
n

c
ti

o
n

 

 

Cluster data

All data 
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Recovery factor (RF) curves 

…optimal number of clusters …selected clusters with centroids 

Recovery factor curves 

associated with cluster 

centroids… 
…generated 

URF cdf with 

simulated 

cluster 

centroid RF 

data… 
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 Quantifying and ranking the impact of uncertainty in underlying geological 

models is of fundamental importance when reconciling with dynamic data!  

 Workflow introduces novel aspects to quantification of uncertainty for Integrated 

Asset Management and Production Forecasting: 

 a) Integrates and dynamically interfaces reservoir simulator with next-  

     generation Geological modeling. Future development will consider  

     multi-level approach to history-match reservoir pressures and   

     define/update pore scale features – followed by well-by-well HM.  

 b) History-matching of well production data interfaces high-resolution    

     subsurface models and robust model parameterization and updating, 

     with great adherence to geological detail! 

 c) Fully automated, parallel and load-distributed, without compromising 

     statistical rigor – applicable to large-scale, real-time projects! 

 d) Uncertainty ranking of history-matched models to intelligently select an 

     optimal geological model that secures the best (most likely) response 

     for production forecasting! 

 The workflow is currently being developed and implemented in collaboration with 

the Middle East partner. 

Summary and Conclusions 
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