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Abstract 

 
From mid-2012, the Sarawak Gas Asset will comprise 20 producing fields accounting for more than 40 Tcf of gas initially in place and 
supplying more than four Bscf/d to the Malaysian LNG plant at Bintulu. A tool for performing quick and timely health checks of reservoir 
models is therefore invaluable for providing confidence in model-based volumetric estimates, production forecasting and optimum gas 
supply planning. In Shell, a synthetic seismic workflow is used for validating carbonate reservoir models against seismic data, effectively 
“closing the loop” in the integrated reservoir modeling process, which originates with the interpretation of the seismic data.  
 
The underlying mechanics of the process is to convert the reservoir properties in the model (primarily porosity) to acoustic rock properties 
(Vp, Vs, and Density), based on water-wet rock property regressions derived from the available well data. Gassman fluid substitution is then 
used to convert the predicted acoustic properties to their gas-saturated state. As an initial QC of the model, the predictions of acoustic 
properties are compared to the measured acoustic logs at the well locations. Synthetics based on these models are subsequently generated by 
convolving the AI property model with a seismic wavelet extracted from the seismic dataset and compared back to the actual seismic data.  
 
Developing a workflow for validating Sarawak carbonate reservoir models against seismic has come with many benefits. Field examples 
exist where the technique has been applied as an effective check for internal reservoir architecture. This extends to scrutiny of the lateral and 
vertical porosity variability away from wells. Furthermore, it is used for constraining the modeling and porosity enhancement that is 
assigned to karstified networks and in many cases, as a tool for testing dynamic simulations through the incorporation of 4D repeat seismic 
acquisition results. Given that seismic acoustic impedance drives both porosity and permeability models in the Sarawak carbonate reservoirs, 
it ultimately impacts the predicted dynamic behavior of these reservoirs. As an early detection tool, this workflow can alert subsurface teams 
to issues inherent in their interpretation, depth conversion and modeling, which can be addressed in a timely manner to avoid surprises with 
respect to volumetric estimates, forecasting and well planning, resulting in more efficient management of the gas reserves of offshore 
Sarawak.  
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OUTLINE

SARAWAK CARBONATE PLAY:

Introduction to Asset Environment

Regional Geological Context.

METHOD:

Generalized Modeling Workflow for Sarawak Carbonate fields.

Synthetic Seismic Validation Method (SSV).

CASE HISTORIES:

Examples for validating models from Sarawak carbonate fields:

Reservoir architecture & vertical porosity variations.

Lateral porosity variations.

Karst mapping and property assignment.

Dynamic simulation results with 4D seismic.



SARAWAK ASSET OVERVIEW
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REGIONAL CONTEXT – Central Luconia 
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KEY MODELING THEMES:
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F14 – JINTAN – M1

General Field Dimensions

Overview of key subsurface and development risks.

REGIONAL CONTEXT – Central Luconia 
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KEY MODELING THEMES:

MFS can be mapped an a regional scale, 

correlated across fields.

This cyclic behavior has a strong influence on 

vertical porosity variations and reservoir 

connectivity.
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F14 – JINTAN – M1

General Field Dimensions

Overview of key subsurface and development risks.

REGIONAL CONTEXT – Central Luconia 
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SUBSURFACE/DEVELOPMENT UNCERTAINTIES:

Porosity Distribution (Horizontal/Vertical).

Water Breakthrough Timing/Aquifer Behavior.

Karstification.

Variable seismic data quality.
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GENERALISED WORKFLOW (STATIC MODEL)
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GENERALISED WORKFLOW (SSV)
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1D & 2D QC TOOLS – SHELL PLUG-IN
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ROCK3D SYNTHETIC GENERATION
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ROCK3D >> ROCK3D SYNTHETICS

SEISMIC COMPARATOR

Rapid model QC and iterative updating.

QC Steps at 1D Well Scale >> 2D X-Section 

and Map View >> 3D rapid scan volume scale.



1D & 2D QC TOOLS – SHELL PLUG-IN
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1D & 2D QC TOOLS – SHELL PLUG-IN
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3D QC TOOLS – SHELL PLUG-IN
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RESTRICTED

CASE STUDIES

Field Examples from Sarawak Luconia Carbonate 

Play.



FIELD A - INTERNAL ZONE ARCHITECTURE

Synthetic versus actual time thickness ratio 

between Top Carbonate & H1.
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Actual SeismicBlack: modeled TWT

Blue: GOC&OWC TWT

Yellow: orig horizon TWT

FIELD B - INTERNAL ZONE ARCHITECTURE

A

Synthetic PRIOR MODEL

Synthetic POST UPDATE

Error with original velocity model has been 

detected.

The error highlighted by difference in 

modelled and original marker (Z5) marking 

top of a field wide tight layer.

Positioning of this layering scheme with 

respect to OWC critical to assessment of 

development concept.
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INCORRECT MODEL  - SYNTHETIC IMPEDANCE DATA

Tight zone propagated 

into Oil Rim target.

Note: Black= Static Model, 
Colour=Input.

GOC

OWC

SEISMIC ACOUSTIC IMPEDANCE – CORRECTED TZ

GOC

OWC

DEVELOPMENT PLANNING (OLD VS. UPDATED MODEL)

PLANNED PRODUCTION WELL

Note: Black= Static Model, 
Colour=Input.

TOP RESERVOIR MAP with 

planned well locations

AI data indicates baffle more 

variable than modeled.

The errors have been identified and corrected.  This leads to improved model based predictions 

for well performance.

Better risk mitigation, optimal well placement and development concept screening.





FIELD C: LAYERING ARCHITECTURE AND UPSCALING

Vertical heterogeneity in 

this layer is not captured 

in the upscaled model.

Subtle differences in 

zone thickness detected, 
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predicting porosity in 
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POROSITY PREDICTION IN SARAWAK CARBONATES

To predict lateral porosity variations, we  

assume a relationship between porosity 

& AI.

This relationship is poor at the log scale 

and core scale measurement, evidence 

suggests that it is reasonably good at the 

seismic scale.

Therefore seismic AI data is used as a 

secondary variable to constrain porosity 

in our models.

UNCERTAINTIES:

AI Processing (LFM and ULFM).

Absolute vs. Relative AI Data.

Seismic Data Quality.

Impact of gridding algorithm and 

geostatistical parameters.

Porosity vs AI from log data for several offshore 

Sarawak carbonate fields.



FIELD C: LATERAL POROSITY VARIATIONS IN MODELS

Overall match between synthetic and actual RMS amplitudes trends are reasonable.  What constitutes a 

good match is field specific, dependent of various factors.

Workflow highlights potential uncertainty in porosity prediction away from well control, impacting infill well 

target analysis.  Model QC workflows are valuable INTEGRATION tools.
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MODEL THEME: VALIDATING KARST PROPERTIES

Location of digenetic KARST facies are well 

constrained on seismic.  BUT:

What are the correct dimensions to model?

What are the correct properties to assign?



FIELD D - VALIDATING KARST PROPERTIES

Actual seismic data

Karst discrete propertySynthetic seismic: +5% porosity in Karst 

Synthetic seismic: without Karst 1 2

34

Better seismic 

character match

Using an iterative approach, the most optimal property is assigned that gives closest match to actual 

seismic character associated with a diagenetic karst facies.



FIELD E: DYNAMIC SIMULATION COMPARED TO 4D SIGNAL 

Sw 2004 model

Sw 2008 model

Timing of water breakthrough is a key 

challenge and subsurface uncertainty.

Time-step Saturation Models can be 
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Seismic volumes.
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compared to acquired 4D signal 

(difference).

Mismatch between AI difference vs 4D 

signal indicates where water movement is 

not properly constrained.
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FILTERING FOR DETECTABLE 4D SIGNAL – SARAWAK HISTORY
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FIELD E: DYNAMIC SIMULATION COMPARED TO 4D SIGNAL 

Enhanced use of 4D seismic in dynamic simulations 

and constraining of water breakthrough predictions.

4D data points towards “patchy” bottom drive 

aquifer influx. 

Previous dynamic model predicts a general flank 

drive driven water encroachment.

A 2% ΔAI and minimum height above contact (33ft) 

filter is applied to the synthetic AI model, to match 

minimum 4D signal that can be detected.

Areas of mis-match between 4D signal and 

modeled AI change are easily highlighted.
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FIELD E: COMPARISON BETWEEN PRIOR AND UPDATED MODELS
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and reservoir engineering understanding.

Effective close-the-loop between disciplines.

PRIOR

UPDATED

Average % AI Change Zones 

5 and 6

Flank Drive 

represented in old 
Model

SYNTHETIC

Flank Drive Aquifer 

Influx represented in 
Dynamic Model

SYNTHETIC ΔAI%

(2% & 50ft Sweep Filter)

IMPROVED HISTORY MATCH 

(WATER PRODUCTION)

WELL H20





CONCLUSIONS

Synthetic Seismic Validation: 

Encourages Geo-Modellers to „think seismic‟ and Geophysicists to „think 

geology‟.

Early Detection Tool alerting subsurface teams to issues in modeling 

approach/strategy and provides easy tool for Iterative Model Updating.

Tool for integration between disciplines.  Shorter modelling cycle times. 

Key Leanings:

The technique promotes a better understanding of the relevance of seismic 

amplitude variations on a subsurface model.

Internal reservoir architecture & layer thickness can be quickly checked through 

to upscaled model.

Use of AI data as secondary variable to constrain porosity distribution in models 

produces good match to seismic amplitudes.

Porosity enhancement in features, which are interpreted as karst, produces 

reasonable match to seismic data character. 

4D synthetic seismic validations of dynamic simulations against available 4D 

seismic data can be used as an additional history matching parameter.



FIELD EXAMPLES courtesy of:

FIELD A by Khairun Niza Baharaldin

FIELD B by Kenneth Boey

FIELD C by Paul Hague

FIELD D by Yee Shuh Wen

FIELD E by Alexander David Kayes

PLUG, for further information please attend:

Yee Shuh Wen paper on “A decade of 4D seismic monitoring of carbonate reservoirs in offshore Sarawak, 

Malaysia”, Wednesday 19th September.




