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Abstract

Outcrop data and satellite imagery of modern systems typically provide only 2D and quasi-3D data on the geometry, orientation and
dimensions of reservoir sand bodies, which are critical elements for the construction of geologically meaningful, 3D, object-based reservoir
models. 3D seismic data can also provide important data, although the ability to collate large, statistically valid datasets is limited by the
tools that are available in standard seismic interpretation software packages. We present a new methodology for quantifying planform
geometries and dimensions of fluvial channel sand bodies that are imaged in shallow, near sea-bed, 3D seismic datasets. Data capture has
been semi-automated using ArcGIS, which allows fast and efficient mapping of these morphometric parameters. We have applied this
methodology to a Pliocene-Pleistocene fluvial succession that is spectacularly imaged on a high-resolution, regionally extensive, 3D seismic
survey from the Malay Basin, Southeast Asia, and we focus on the quantification of key channel parameters, such as meander channel width,
meander belt width and meander wavelength. We demonstrate that the lower part of each seismic unit is characterised by wide, deep, low-
sinuosity channels, which pass gradually upwards into narrower and thinner, high-sinuosity channels at the top. We speculate that a
combination of sea-level changes and fluctuations in discharge and sediment load, both of which may have been linked to climate variations,
may have controlled the observed stratigraphic organisation. Empirical equations developed on modern rivers have been tested on the
channels identified in this study. The results suggest that existing empirical equations cannot be applied to describe the relationships between
geometric parameters that characterise the fluvial channels in this particular geological setting. Hence, several new empirical relationships
are proposed; they may be more applicable for predicting fluvial channel dimensions in humid-tropical settings. Our data have been used to
constrain reservoir models for the deeper, oil- and gas-producing Miocene succession, which contains a large proportion of fluvial channel
reservoirs but which is less clearly imaged on 3D seismic data. The study highlights the value of using high-quality, near sea-bed 3D seismic
volumes for extracting analogue data on sand-body dimensions; datasets such as these are increasingly accessible to researchers from many
parts of the world.
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Presenter’s notes: The Sunda Shelf has an area of 125,000 km2, making it the largest epicontinental area in the world that is located within
in a tropical humid climate setting:

The Sunda Shelf was exposed as far as the 200 m bathymetry level during the late Pleistocene lowstand of sea level.
It now has an average water depth of 70 m and is characterised by an extremely low gradient (<0.1 degree).

Study area is in the centre of the Malay Basin, which is one of several deeply buried Tertiary basins on the large Sunda Shelf: 500 km long
& 250 km wide.

Sunda Shelf — end member: extremely wide, very high rates of sediment supply and high biodiversity.

Previous studies highlight the following factors: 1. Non-glaciated, 2. Humid-tropical climate, 3. Large epicontinental area (tectonically-
inactive), 4. Hinterland areas (e.g., Himalayas) tectonically active, and 5. Characterised by very high erosion & sedimentation rates.



Tectono-Stratigraphic Setting

Study Area
(projected from the NW)
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Key phases of basin evolution:

« Initial rifting (Oligocene)

* Thermal subsidence (Early-Middle Miocene)
* Inversion (Middle-Late Miocene)

* Thermal subsidence (Pleistocene-onward)
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Presenter’s notes: The Malay Basin is a typical SE Asian basin that was initiated during Early Tertiary rifting, followed by thermal

subsidence and inversion. From the late Pliocene/Pleistocene onwards it has been tectonically quiescent.




Stratigraphic Summary
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Presenter’s notes: Late Cenozoic basin-fill comprises Oligocene fluvial-lacustrine deposits that are overlain by coastal plain and marginal
marine sediments. Productive oil and gas reservoirs occur mainly within the Miocene. The gross depositional environment of the Miocene
continued into the Pliocene, and throughout this time the area was characterised by a humid tropical climate, without glaciation. Hence,
sedimentary environments in the shallow sub-seabed part of the stratigraphy, which is Pliocene-Recent in age, mimics the deeper productive
Miocene reservoirs.



Project Rationale and Aims

Rationale: The depositional characteristics of the Plio-Pleistocene succession of
the Malay Basin mimics that of the deeper, hydrocarbon-bearing Miocene
interval and can, therefore, be used for reservoir analogue purposes.

Project aims: To describe and interpret a large, shallow (mega-merge) 3D
seismic data volume, especially documentation of the size, geometry and
architecture of fluvial channel systems in the Plio-Pleistocene succession, in
order to:

« Improve insight into fluvial channel architecture, stacking patterns and
stratigraphic evolution

* Guide sub-regional horizon-slice-amplitude interpretations at deeper,
prospective Miocene levels

» Develop a quantitative reservoir analogue database of Pleistocene fluvial
channel-body types, dimensions and geometries using GIS

» Establish a quantitative database for humid-tropical fluvial channel
reservoirs to constrain input into 3D reservoir models




Mega-merge 3D
Seismic Volume:

« Total area: c. 25,000 km?
* Study area: 11,560 km?
* Length: 100 km

» Width: 115 km

G_BARAT VIUYONG_SH-2.

Presenter’s notes: Study area based on 10 separate 3D surveys merged into a single interpretable volume. They have different acquisition
and processing characteristics.

DELAH_SH-14.1




Seismic Stratigraphic Framework

TWT (ms)

Presenter’s notes: (I) Uninterpreted and (11) interpreted regional seismic section through the 3D seismic dataset illustrating the seismic units
and the bounding surfaces.

. Cross-sectional profiles of the largest, seismically-detectable, channel systems are shown: white ‘u’ and ‘v’ shapes plus two large
IVF.
. The main bounding surfaces are characterised by prominent incisions.

. Truncation at base of Unit A.



Seismic Stratigraphic Framework

Presenter’s notes: (I) Uninterpreted and (l1) interpreted seismic section through the 3D seismic dataset illustrating the Units and the
bounding surfaces.

. Note the seismic expression within the deep incision is different from the adjacent strata. “V’-shaped channel morphology associated
with accretion surface is also shown
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[ Type 1 & 3 Channels: 20-50 m deep, 500-3000 m wide, low sinuosity, V- & U-shapes
[ ] Type 284 Channels: 10-30 m deep, 150-600 m wide, high sinuosity
[ Type 5 Channels: 6-12 m deep, 75-200 m wide, high sinuosity (vertical resolution limit)

Type 6 Channels: 35-80 m deep, 3,500-13,000 m wide, low sinuosity, U-shaped
(incised valleys of major trunk rivers)

|:| Coastal plain (undifferentiated fines) - Marine mud (Holocene)

Presenter’s notes: 6 different channel types identified from width (W), depth (D), sinuosity (SI) & cross-sectional geometry (U- and V-
shapes). Vertical resolution limit at c. 7-8 m.
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Presenter’s notes: Type 3 (Type 1 not shown) is characterised by u-shaped, infilled with variable-amplitude, laterally continuous seismic
reflections. These types are common in association with major low-sinuosity channels. Type 4 (Type 2 not shown) is characterised by
narrow, shallow, u-shaped, with a clear erosional base and sub-seismic infill. These types are common in association with medium-scale,

high-sinuosity channels.
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Presenter’s notes: Erosional relief of the F reflector (base sequence 7) = up to 90 m. Width of the valley - up to 18.5 km.
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Type 1 & 3 Channels

Type 6 Channels

il

|:| Coastal plain
Summary:

+ 6 regionally mappable erosion surfaces: A-F (old to young)

* 6 main erosively bounded stratigraphic units: Units 2-7 (c. 50-150 m thick)
* Prominent U- and V-shaped incisions define most major erosion surfaces
» Occasional major, NW-SE oriented trunk rivers are preserved (Type 6)

:I Type 2 & 4 Channels - Type 5 Channels:
- Marine mud (Holocene)

Erosively based,
fining-upward
successions




Sequence 2 — Channel trends & geometries
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Presenter’s notes: This is the first of three summary slides.



Sequence 3 — Channel trends & geometries
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Sequence 4 — Channel trends & geometries
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Present-Day Topography & Bathymetry
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From Voris (2000); Sathiamurthy & Voris (2006)

Presenter’s notes: Work by Voris and others have defined a network of fluvial systems based on high-resolution sea-bed bathmetry data; the
Chao Praya-Johore drainage system, the largest system, trended along the axis of the earlier rift/sag basins.
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1. Several different channel types have been identified in the
Pleistocene succession of the Malay Basin
2. Marked vertical variability (stacking patterns) in channel types,
dimensions and orientations, but with repeated vertical organisation
3

How do we permanently capture and quantify this variability?

= GIS applied to interpreted seismic time-slices and/or horizon-slices:
(1) Easier, (2) More accurate, & (3) Faster




Fluvial System Mapping & GIS Methodology

Morphometric Parameters:

— Channel width (CW)

— Meander-belt width (MBW)

— Channel depth (CD)

— Channel length (L)

— Channel meander wavelength (MLW)
— Channel sinuosity (Sl)

— Radius of curvature (RC)

— Valley width (VW)

— Valley length (VL)

— Valley depth (VD)

Si=La/ML

Bankfull width
x

Maximum
bankfull depthy

. \/\
wnstream reach

8

Presenter’s notes:

*Seismic interpretation software is not designed to make accurate and spatially-constrained measurements of fluvial channel dimensions.
*Existing methods for measuring fluvial channels dimensions are time-consuming and inaccurate.

*Two new methods presented here utilise seismic time-slices and interpreted seismic horizons: (1) Easier, (2) More accurate, & (3) Faster.

1) Schematic drawing showing the methodology adopted to measure the morphometric parameters of the fluvial systems (A) and the
channel orientation (B). The morphometric parameters include channel width (CW), channel depth (CD), meander belt width (MBW), radius
of curvature (RC), meander wavelength (ML), and channel length (La). Sinuosity (SI) is calculated as the length along the channel course

(La) divided by the meander wavelength (ML). The channel orientation is determined by defining the azimuth of a line that has been drawn
between two points of the upstream and downstream reaches.

2) Schematic drawing showing the methodology adopted to measure the channel depth (CD) from the seismic section. In this study, the
channel depth is measured as the maximum thickness of channel incisions, which is the vertical distance between the top and base of the
incision feature.



GIS Methodology - brief summary : ;

x=334537.5 x=4424375
y=692512.16 y=692512.16

(1) Import spatially |
referenced seismic |
time-slices into
ArcGIS using the
Georeferencing Tool

X=442437.5
y=576800.5




GIS Methodology: e.g. meander belt width

(2) & (3) Digitise
channel edges (red
lines) & the meander
belt (black polygon)
using the Editor Tool




(4) & (5) Create meander belt
centreline (blue line) channel-
perpendicular lines which are
perpendicular to the meander belt
centreline (green lines) using ET
GeoWizard




GIS Methodology: e.g. meander belt width

6) — Clip channel-perpendicular lines to
meander belt with using Analysis Tools:
meander-belt width can now be
measured (148 measurements; MBW =
8-18.5 km)

Meander-Belt Width (km)
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Measurments
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*Existing equation (red dashed line) defines key parameter trend

*Leeder (1973) (solid black line) overestimates CW

*Generation of a ‘bespoke’ equation (dashed black line) for high SI channels

*CW and CD display a (predictable) positive relationship over several orders of magnitude

*Definition of a new equation to define this relationship

Presenter’ notes: (a) Cross-plot of channel depth (CD) versus channel width (CW) shows that as CW increases so does CD. This relationship
allows for a new empirical equation to be developed (dashed-line). The developed equation is CW=0.3(CD"2.54). (B) Approximately
130 channels were measured in detail.
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= Equation of Lorenz et al. (1985) (MBW=7.44CW1.01) under-estimates for high-sinuosity channels and over-
estimates for low-sinuosity channels
= Two ‘bespoke’ equations are developed for the two sub-populations:
+ MBW=4.7CW0.92 for the low-sinuosity channels (Gp-2; red dashed-line)
« MBW=4.77CW0.92 for the high-sinuosity channels (Gp-3; blue dashed-line)
= CW and MBW display positive a relationship
= Two ‘sub-populations’ of this relationship are observed
* Low Sl systems (Gp-2) (low slope=low rate of parameter increase)
« High Sl systems (Gp-3) (high slope=high rate of parameter increase)

Presenter’s notes: Cross-plot of channel width (CW) versus meander belt width (MBW). This graph shows a direct relationship whereby
MBW increases as CW increases (A). In addition, it shows two main poupulations: one with small slope (rate of increase) corresponding to
the low-sinuousity channels (Group-2), and another with a larger slope representing highly sinuous channels (Group-3).
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(1) Empirical equations developed from studies of modern rivers have been tested on the
humid-tropical coastal plain channels identified in this study and show significant
deviations

(2) Several new empirical relationships have been established based on our dataset,
which may be more applicable to humid-tropical humid climate settings, including
both the Plio-Pleistocene and Miocene of SE Asia

(3) The deviations from established trends may reflect:

— (i) type of the channels - sand-bed alluvial rivers in semi-arid and sub-humid
(many modern studies) vs. mud-rich coastal plain channels in humid-tropical
conditions (this study)

— (ii) basin-specific controls — variations in sea level, tectonics, climate,
vegetation and bedrock type all will have contributed. In relation to the study
area; climatic fluctuations, affecting the rainfall, discharge, erosion and sediment
supply, may have been most significant

— (iii) methodology - errors associated with measurement of values from seismic
reflection datasets, vertical and lateral resolution uncertainties and/or differences
in measurement techniques




Conclusions

+ The mega-merge 3D seismic dataset has enabled reconstruction of late
Pleistocene river systems in the Malay Basin

* The c. 500 m-thick Plio-Pleistocene comprises approximately 6 erosion-bounded
seismic stratigraphic units, each recording cycles passing from higher energy,
low-sinuosity channel systems (including major NW-SW-oriented trunk rivers)
into lower energy, probably finer grained, high-sinuosity channel systems

« It has not been possible to uniquely discriminate controls on these fluvial cycles,
with both drainage basin conditions (rainfall, discharge, tectonics, etc.) and sea-
level fluctuations (in the South China Sea) being influential

* A GIS-based method for quantify fluvial geomorphic features from 3D seismic
reflection data has proven to be a more efficient and accurate method when
compared to established methods

» Several ‘bespoke’ empirical relationships have been established for different
fluvial parameters; these may aid quantitative predictions of deeper, productive
Miocene fluvial channel sand bodies in the Malay Basin and in other humid-
tropical fluvial systems elsewhere
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