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Abstract 
 
The automation of history matching makes very difficult for modellers to preserve the geological realism of reservoir models. 
Automation incurs a risk of generating reservoir models with unrealistic geometries based on ad-hoc combination of the model 
parameter (e.g. channels that are 1 m wide and 200 m thick). Moreover, computational effectiveness of history-matching decreases, as 
the search for optimum extends to a wider domain. Furthermore, the use of geologically unrealistic reservoir models could mislead the 
development plan for a specific reservoir. 
 
Use of geological prior information in reservoir models provides a way to control relations between geomodel parameters to ensure 
their realism. Geological prior information is usually obtained from sources like outcrops, seismic data, or modern depositional 
environments. Geological prior models quantitatively describe the natural relations among the geo-parameters (e.g. channel width, 
thickness, sinuosity, etc). 
 
Current practice of modelling sand bodies in deepwater channels is based on deterministic or two-dimensional geological priors, 
which establish relationships between only two parameters at a time.  
 
In this work we propose to tackle the problem of preserving realism in automated history matching by building robust prior models 
that describe the non-linear multivariate dependencies between geological parameters of the deep water channelized system. We built 
multi-dimensional realistic priors using intelligent techniques, specifically One-Class Support Vector Machine. OC-SVM allows 
capturing hidden relations of the deep water channel parameters (Channel Width and Thickness, Meander Amplitude, and 
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Wavelength). Furthermore, it is possible to predict realistic parameter combinations, not observed in the available data; but still 
plausible in nature. 
 
In automated history matching we sample from these realistic priors in order to assure geological realism. A Multiple Point Statistics 
(MPS) algorithm SNESIM is used to model facies in a deep water channelized reservoir. Variability of the channel geometries are 
produced by SNESIM algorithm using the affinity parameter, which alters the geometry compared to the training image. We 
developed a technique to link the MPS affinity parameter with the observed geological characteristics described by the intelligent 
priors used in history matching. History-matched models produced under geological realistic constraints reduce uncertainty of the 
production prediction. 
 

Selected References 
 
Castro, S.A., J. Caers, and T. Mukerji, 2005, The Stanford VI Reservoir: l18th Annual Report, Stanford Center for Reservoir Forecasting, 
Stanford University, Palo Alto, CA, 73 p.
 
Posamentier, H.W., and V. Kolla, 2003, Seismic geomorphology and stratigraphy of depositional elements in deep-water settings:  
JSR, v. 73/3, p. 367-388. 
 
Scholkopf, B., J. Shawe-Taylor, A.J. Smola, and R.C. Williamson, 1999, Kernel-dependent support vector error bounds:  Ninth 
International Conference on Artificial Neural Networks, London, p. 103-108. 
 
Wonham, J.P., S. Jayr, R. Mougamba, and P. Chuilon, 2000, 3D sedimentary evolution of a canyon fill (lower Miocene-age) from the 
Mandorove Formation, offshore Gabon, in D.A.V. Stov, and M. Mayall, (eds.), Deep-water sedimentary systems; new models for the 
21st century:  Marine and Petroleum Geology, v. 17/2, p. 175-197. 
 

Website 
 
Chang, C.-C., and C.-J. Lin, 2012, LIBSVM – A Library for Support Vector Machines.  Web accessed 6 August 2012. 
http://www.csie.ntu.edu.tw/~cjlin/libsvm/  



HW Uncertainty Project 

Geological Realism of Deep Water 
Reservoir Models with Intelligent Priors 

T. Rojas, V. Demyanov, M. Christie  
and D. Arnold 

Heriot-Watt University 
 

AAPG-2012 ACE 
Long Beach, April 22-25 

 



Outline 

• Introduction 

• Geological Prior Information 

• One Class-SVM 

• Automatic History Matching 

• Conclusions 

 

  



Aims 

• Highlight the use of geological prior information to ensure 
realistic geology. 
 

• Build realistic Geological Prior Models for simulating 
deep marine channels. 
 

• Include these prior models into the automated history 
match framework. 
 

• Reduce uncertainty of reservoir models using intelligent 
prior information. 
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Prior  Probabilities 

  Prior probabilities are based on previous experience, and often 
used to predict outcomes before they actually happen. 

Scheme for the application of the Bayesian framework 
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Geological Parameters 
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Sources of Data for Modeling Priors 
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Prior  Information for Facies Geometry 
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Empirical Equations 

Modified from Wonham et al., (2000) 



Existing Knowledge 
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Building Realistic Priors 

• Multidimensional problem 

• Avoid uniform ranges and linear regressions 

• Predict between data points 

Machine Learning Techniques 
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Capture non-linear multivariate relations 
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One-Class Support Vector Machine  

    
• Extension of SVM to handle training with only 

positive examples (“one-class” classification). 
 

(Schölkopf et al.,1999) 
 

 



OC-SVM Toy example 
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OC-SVM in 4-D 
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OC-SVM in 4-D Cloud 
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OC-SVM in 4-D Cloud 
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Truth Case 
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Facies Simulation 
Multiple Point Statistics 

Width: 500 m 
Thickness: 30m 
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History Match Parameters 

• Misfit Definition 
                                   σ: 10% of the Truth case data 
                                   50 time-steps (600 days)  
                                   6 Producing  wells 
                                   WWCT, WOPR, WBHP 
 
 
• Sampling Algorithm Definition 
        Particle Swarm Optimization 
        15 Particles  
        1116 Iterations 

M = Σ (qobs – qsim)2 

2σ2 
t 

t =1 

T 



Misfit vs Iteration 

Unrealistic Models 



Facies Models 
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History Match 



Analysis of the Generated Models 
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History Match using Uniform Priors 
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History Match using Uniform Priors 
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Conclusions 
 

• Intelligent  priors ensure realism of geological models. 

 

• Reduce uncertainty in reservoir prediction. 

 

• Reduce the number of models and computing time. 

 

• Check for realism in geological models is essential, because 

unrealistic models may produce good history match as well. 



Future work 

• Generate intelligent prior models for: 

      - other depositional environments 

      - other geological properties 

      - petrophysical  properties 

                                      

•  Include improvements on continuity using MPS 

 

• Include multiple training images  
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Probability Estimation 

New Grid =   OCSVM grid + Unrealistic points 

OC-SVM 

P(x)=(1+ exp(A x + B)) -1 

x : Decision Values obtained from oc-svm 



Probability Estimation 

P(x)=(1+ exp(A x + B)) -1 



Facies Modelling   
• Increase Geological Realism 

• Potentially more complex patterns than those 

    modelled by variogram. 

• Incorporate realistic geological  prior information. 

• Easy incorporation of well and seismic data. 

Multiple Point Statistics 
(MPS) 



Channel Geometry in MPS 

• Affinity parameters are difficult to interpret 

Training Image 
Affinity 

x: 2  y: 1  z:1  

Realization 
Input DATA 

Well Data 
Seismic Data 
Trends 

X 

Y 

X 

Y 



Channel Geometry in MPS 



Geological vs Model Algorithm Parameters 
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