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Abstract 
 
Currently there are 128 enhanced oil recovery projects worldwide using CO2 injection as a tertiary recovery method 
(Kootungal, 2010). When revitalizing mature oil fields using CO2, it is important to monitor pore pressure and fluid saturation 
changes. Multi-component time-lapse seismic imaging has been advocated as a modern tool to interpret reservoir changes. To 
understand how pressure and fluid saturations influence compressional wave (P) and shear wave (S) velocities, five core 
samples are taken from the Morrow A sandstone formation at Postle Field, Texas County, Oklahoma. These samples represent 
high permeability, low permeability and cemented zones. We measured P- and S-wave velocities in the laboratory as a 
function of confining pressure, pore pressure and fluid type. The testing sequence begins with measuring each sample in the 
dry rock state and is followed by flushing each sample with brine, live oil, live oil with a 0.334 mol fraction of CO2 and pure 
CO2. This includes CO2 in the gas and supercritical phase. The objective of these laboratory experiments is to determine the 
effect of pore pressure changes on the different lithological zones. The samples taken from the high permeability zone exhibit 
maximum sensitivity to changes in pore pressure. The P-wave velocity shows a response that is sensitive to both fluid 
saturation and pore pressure, whereas S-wave velocity is mainly sensitive to pore pressure. In addition, the S-wave velocity 
shows a greater sensitivity to changes in pore pressure than P-wave velocity. 
 
We use the fluid and stress response measured from the core samples to modify velocity well logs through a log facies model 
correlation. The modified well logs represent the brine and CO2 saturated cases at minimum and maximum reservoir pressure. 
These well logs are used for full waveform seismic modeling. For both the brine and CO2 saturated cases, the P-wave response 
shows a maximum time-lapse amplitude difference at near offsets. Whereas the S-wave response shows a maximum time-lapse 
amplitude difference at near offsets for the brine case and at far offsets for the CO2 saturated case. This demonstrates the 
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advantage of using offset limited stacks for time-lapse analysis as compared to full offset stacks. The seismic modeling results, 
verified and calibrated to the laboratory core measurements, demonstrate the importance of multi-component time-lapse 
seismic data for reservoir monitoring. 
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Location of Postle Field

Modified from Bowen and Weimer 2003
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Presenter’s Notes: Deposition of Morrow sand Postle Field occurred during a relative sea level lowstand, typical Morrow sediments consist of shales 
punctuated by valley fill sand deposits.  
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Presenter’s Notes: Cemented: Detrital – eroded and transported, will help determine depositional environment. Not as much grain-to-grain contact as 
in the other samples – possibly early cementation Considerable amount of Ankerite, which could indicate that the pore water(s) was rich in either Fe 
or Mg or Mn. Possible quartz overgrowth – angular overgrowths over subrounded quartz grains. Most of the pores occur as interstitial space in 
between fine-grained kaolinite clay.  High Perm: Most of the porosity occurs as openings between quartz grains. Subrounded quartz grains – 
transport distance from provenance. Mature – High percentage of quartz grains which are the most resistant. Kaolinite known to reduce porosity has a 
lesser effect on perm. Illite known to have little effect on porosity known to reduce perm. Plagioclase – less resistant to erosion. Unlike samples B 
and F, only a trace amount of ankerite occurs as cement.  Low Perm: More similar to the first sample. Most of the pore space occurs as interstitial 
space in between fine-grained kaolinite and chlorite. 
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Presenter’s Notes: How do we find the CO2? What would the CO2 look like? To answer these questions we need to understand the rock physics, 
petrophysics, etc. 
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Presenter’s Notes: Since one of the objectives is to compare the log facies model with the wells that have core, I wanted to capture the variability 
within the reservoir. To do this I created a master well consisting of all the reservoir zones spliced together. I then tagged the wells with core to this 
Log Facies Model. (From the Heterogeneous Rock Analysis) we get our Log Facies model from the input curves Gamma Ray, Neutron Porosity, 
Bulk Density and Photoelectric Effect. The technique used to determine this Log Facies Model is principal component analysis to maximize the 
variability and cluster analysis to identify similar groupings of data. To understand what these Log Facies colors mean we can look at Box and 
Whisker Plots. 



Gamma Ray Neutron Porosity

272.9
0.45

0 40

(a
pi

)

222.9

172.9

v/
v)

0.35

0.30

0 25

0.40

(

122.9

72.9

( 0.25

0.15

0.20

Log Facies Log Facies

Density Photoelectric

22.9
1 2 3 4 1 2 3 4

0.10

y

2.7

2.6
3.2

(g
m

/c
c) 2.5

2.4

2.7

2 2

L F i L F i
1 2 3 4

2.3

2.2
1 2 3 4

2.2

1.7

Log Facies
(1) High Quality Reservoir (2) Intermediate Quality Reservoir
(3) Low Quality Reservoir   (4) Interbedded Shale

Log Facies Log Facies



 
 
Presenter’s Notes: The log facies model is then used to guide the changes in P- and S-wave velocity based on the observations made from the core 
experiments. 
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Full Waveform Seismic Modeling
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P-wave Amplitude Difference
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S-wave Amplitude Difference
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Summary

High permeability samples most stress sensitive

y

Challenges modeling laboratory data

 Log Facies Model identifies different 
permeability zonesy

Seismic modeling shows different amplitude 
responses for the brine and CO casesresponses for the brine and CO2 cases

Motivation for combining P- and S-wave g
attributes to improve time-lapse studies

Motivation for a time lapse study on angle stacksMotivation for a time-lapse study on angle stacks



THANK YOU



en
ce

P-wave: RMS Amplitude Difference

0

0.05

e 
D

iff
er

e

Brine
CO

-0.05

0

m
pl

itu
de CO2

-1829 -915 0 915 1829
Offset (m)

A
m

-6000 -3000 3000 60000
ft

en
ce

S-wave: RMS Amplitude Difference

0

0.05

e 
D

iff
er

e

Brine
CO

-0.05

m
pl

itu
de CO2

-1829 -915 0 915 1829
Offset (m)

A

-6000 -3000 3000 60000
ft



4
Brine and Oil Fluid Mixture Properties at 13.79 MPa
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Log Facies Model
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Sandstone model building
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