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Abstract 

 
Elemental analysis of sedimentary rocks has been used to correlate stratigraphic units, determine sediment source provenance, evaluate the 
tectonic setting of a basin, and for sedimentological classification (recently summarized by Pe-Piper et al., 2008). The use of certain 
elements (e.g. Ti, K, Zr, Hf) to derive information on source and tectonic setting has been shown to be regionally specific and far from 
universal (Ryan and Williams, 2007; Pe-Piper et al., 2008) and previous attempts to calculate quantitative mineralogy has been inaccurate 
with errors up to ±75% when compared to modal compositions. Rather than relying on sedimentary norms and linear models, we propose a 
neural network-based approach to process major, minor and trace element data quickly and accurately (±10%) to determine lithofacies and 
quantify mineralogy of a sedimentary sample. Two different algorithms are presented for this purpose and a performance comparison is 
discussed.  
 
Based on the performance of the models, accurate quantitative mineralogy from elemental analysis is best preformed by a neural network 
approach. This is due to the complexity of mineral chemistry and the non-uniqueness of the distribution of major, minor and trace elements 
within the minerals of the sample. The neural network models are also able to predict lithofacies, determined from previous sedimentological 
studies, in shoreline clastic environments. 
 
The strength of the predictive capabilities of the neural networks is that detailed facies models and stratigraphy can be correlated to offset 
wells using bulk elemental analysis. Element-derived mineralogy and stratigraphy can be used as inputs for reservoir modeling and 
optimization strategies. Our models have been shown to have a high accuracy predicting lithofacies and mineralogy of sedimentary rock 
standard reference materials, cuttings and cores, allowing for predictive modeling of reservoir properties. 
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Elements in Rocks – Why Inorganic Geochemistry?

Major elements define mineralogy and lithology (SiO2

TiO2 Al2O3 Fe2O3 MnO MgO CaO Na2O  K2O  P2O5 ,

plus SO3 and Cl for most rocks)

Mineralogy can be related to rock properties: e.g. 
lithology, porosity, permeability, TOC, brittleness and 
lithofacies.

 Trace elements reflect paleo-environmental 
conditions (productivity and redox) and detrital 
source regions 
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Elemental Geochemical Analysis

 Lab - Sample fusion + ICP-OES/MS analysis

 Wellsite - Pressed powder pellet + energy dispersive X-
ray fluoresence (ED-XRF)
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Comparison of Lab & Wellsite Analytical Methods

 ICP-MS vs. ED-XRF – ca. 5% RSD for elements >2x LOD
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Modeling Approach

 Inversion of geochemical data similar to seismic and 
petrophysical techniques

Multi-variate Statistics

 Principal Component Analysis (PCA)

 Neural Network (NN)

 Self-Organized Maps (SOM)

5
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Test Data Sets

• Near shoreline facies

• Sub-arkosic to sub-lithic sandstone

• Turbidites (Cecilie Field, Siri Canyon, Danish North Sea)

• Thin to massively bedded, very fine to medium sized 
quartzose sandstone, glauconite-rich

• Black shale

• Minor chert and limestone interbeds

6
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PCA Example – Shoreface

 Major/minor element oxides correlate to 
mineralogy and textures

 PC 1 reflects quartz, feldspar and clays 
as framework grains and cements

 PC 2 reflects carbonate, phosphate, 
clay, chlorite, feldspar and heavy 
minerals (rutile) as cements and 
matrix

 Trace elements correlate to mineral 
associations

 Sulfides: S, Pb, Sn, Ni, Mo, Cu, Co, Tl

 Clays: Ga, Rb, Cs, Ce, Nd, Eu, Sm

 Zircons: Hf, Y, Zr, Th, U?

 U : Zircon/heavy minerals, organic 
matter (not near Mo, Ni, V, Cr)
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Limitations of PCA - Shoreface

8

• Can reduce variables in some rock types

•Not suitable for many formations
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Facies Classification by PCA - Success

9

Svendsen et al., 2007 JSR
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Neural Network Architecture
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 Input: Major element oxide wt% 

FFNN

LVQ

 Output: Lithology
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Predicting Lithology: Black Shale
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Chert Shale Dolostone Siltstone Limestone 

n 100 235 6 3 2

FFNN (% correct) 98 98 67 0 100
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Predicting Lithology: Shoreface

12

SiltyClay Sandstone Siltstone 
Dolomitic 
Sandstone 

Arg. 
Sandstone 

n 56 30 64 142 190

FFNN (% correct) 49 25 59 122 161

LVQ (% correct) 49 21 60 120 171
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Classification of Strata: Shoreface

 Inter-class similarities may be equal to or greater than 
intra-class, most appropriate for heterogeneous 
sequences

 Cladistic chemostratigraphic approach is often not 
suitable for reconciling results to traditional stratigraphic 
interpretations

13
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Self-Organized Maps (SOM)

 Neural net approach for unsupervised clustering

 The objective of SOM is to minimize the intra-class, calculating 
the smallest distances between all the samples, and 
maximising the interclass by calculating the largest distances.
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•The colours in the regions containing the red lines 
indicate the distances between neurons.
•The darker colours represent larger distances (inter-
class).
•The lighter colours represent smaller distances (intra-
class)
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SOM Clustering – Cecilie Field
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Sorting & Heavy Mineral Elements- Turbidites

16H. Friis et al., 2007 Marine & Petroleum Geology

Heavy minerals: zircon, rutile, ilmentite

Increasing down section in turbidite
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Conclusions

 Large amounts of geochemical data can be collected from 
cores, outcrops and cuttings. Relatively inexpensive 
compared to routine and special core analysis.

 The complexity of the reservoir rock (detrital and 
authigenic mineralogy) can make geostatistical analysis 
and modeling difficult.

 Probabilistic modeling of geochemical data offers the 
potential to enhance formation evaluation techniques at 
the wellsite and office.
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