${ }^{\text {PS }}$ Intraorganic Nanoquartz Associated with Algal Bituminite within the Devonian Marcellus Formation, Ritchie County, West Virginia: Potential Origins and Implications*

Travis Warner ${ }^{1}$
Search and Discovery Article \#40982 (2012)**
Posted July 23, 2012

*Adapted from poster presentation at AAPG Annual Convention and Exhibition, Long Beach, California, April 22-25, 2012
**AAPG®2012 Serial rights given by author. For all other rights contact author directly.
${ }^{1}$ EQT Production, Pittsburgh, PA, 15222 (twarner@eqt.com)

Abstract

The association between organic matter (primary hydrocarbon reservoir) and authigenic quartz (brittleness indicator) is a critical relationship to understand when assessing reservoir quality in unconventional resource plays like the Marcellus Shale in the Appalachian Basin. Argon-ion milling and field emission scanning electron microscopy/energy dispersive X-ray spectroscopy was performed on a Marcellus sample (11% TOC by weight; 24% TOC by volume) from Ritchie County, West Virginia. Within much of the kerogen, interpreted as algal bituminite, nanometer-scaled quartz crystallites ($\sim 125 \mathrm{~nm}$ aggregates of smaller $<50 \mathrm{~nm}$ 'blobs’) were observed in a chain morphology - likely a 'lattice’ in 3D. Nanoquartz lattices (NQLs) were often observed emanating from authigenic 'in situ' quartz silt, suggesting a genetic relationship between the two. The NQLs observed bear remarkable similarity in both scale and morphology to extracellular biomineralization generated by iron-reducing bacteria, which suggests the possibility of a microbial origin for biogenic quartz within the Marcellus. Where present, NQLs constitute a previously unrecognized volume of quartz which, due to the individual cystallites' nanometer-scale and the intimate association with organic matter, is unobservable with light microscope, standard automated SEM analyses (e.g. QEMSCAN), and likely even XRD. Concerning reservoir quality evaluation, NQLs may outline potential cleavage planes within otherwise ductile organic matter. These cleavage planes could act as pre-propped permeability paths connecting intraorganic nanoporosity to hydraulically stimulated fractures. The prevalence of the NQL phenomenon in the Marcellus is unknown; more extensive sampling is necessary. Future analysis is needed to ascertain the origins (isotope work, if possible on micrometer and nanometer-scaled minerals) and implications (rock mechanics) of NQLs.

ABSTRACT

The association between organic matter (primary hydrocarbon reservoir) and authigenic quartz (brittleness indicator) is critical relationship to understand when assessing reservoir quality in unconventional resource plays like the Appalachian basin's Marcellus shale. Argonion milling and field emission scanning electron microscopy / energy dispersive X-ray spectroscopy was performed on a Marcellus sample (11% TOC by weight; 24% TOC by volume) from Ritchie Co., WV. Within much of the kerogen, interpreted as algal bituminite, volume) from Ritchie Co., WV. Within much of the kerogen, interpreted as algal bituminite,
nanometer-scaled quartz crystallites ($\sim 125 \mathrm{~nm}$ aggregates of smaller <50nm 'blobs’) were nanometer-scaled quartz crystallites (~ 125 nm aggregates of smaller <50nm 'blobs’) were
observed in a chain morphology - likely a 'lattice' in 3D. Nanoquartz lattices (NQLs) were often observed emanating from authigenic 'in situ' quartz silt, suggesting a genetic relationship between the two. The NQLs observed bear remarkable similarity in both scale and morphology to extracellular biomineralization generated by iron-reducing bacteria [9] [10], which suggests the possibility of a microbial origin for biogenic quartz within the Marcellus. Where present, NQLs constitute a previously unrecognized volume of quartz which, due to the individual cystallites' nanometer-scale and the intimate association with organic matter, is unobservable with light microscope, standard automated SEM analyses (e.g. QEMSCAN), and likely even XRD. Concerning reservoir quality evaluation, NQLs may outline potential cleavage planes within otherwise ductile organic matter. These cleavage outline potential cleavage planes within otherwise ductile organic matter. These cleavage
planes could act as pre-propped permeability paths connecting intraorganic nanoporosity to planes could act as pre-propped permeability paths connecting intraorganic nanoporosity to
hydraulically stimulated fractures. The prevalence of the NQL phenomenon in the Marcellus hydraulically stimulated fractures. The prevalence of the NQL phenomenon in the Marcellus
is unknown; more extensive sampling is necessary. Future analysis is needed to ascertain the origins (isotope work, if possible on micrometer and nanometer-scaled minerals) and implications (rock mechanics) of NQLs.

LIGHT MICROSCOPE OBSERVATIONS

AIM / FESEM OBSERVATIONS

LABORATORY
EXPERIMENTS
$\stackrel{\varrho}{\stackrel{\rightharpoonup}{2}}$

Wt. / Vol. \% XRD 11/24\% Organics
48/38\% Quartz
1/1\% K-Feldspar 3/3\% Plagioclase
$4 / 4 \%$ Calcite
3/3\% Dolomite
1/1\% Apatite
13/5\% Pyrite
7/6\% Smectite
4/3\% Chlorite
16/12\% Illite
Geochemistry SRA
$\mathrm{T}_{\text {Max }}$: 474
HI: 45.1
이: 5.2
\%Ro : 1.4

MICROBIAL MECHANISM in vitro SILICA LATTICE FORMATION

NANO-QUARTZ LATTICE PHYSICAL IMPLICATIONS

CONCLUSIONS

1. NQLs represent a previously unrecognized volume of quartz in the Marcellus Formation (not readily resolvable without ion milling and SEM due to its nanometer scale and inherent relationship readily resolvable without ion milling and SEM due to its nanometer scale and inherent rel
with opaque organic matter). Such quartz may be present in other organic-rich formations.
2. Opaline silica precipitation may have been mediated by microbial action, such that authigenic silica formed during eogenesis. This silica may be the precursor to the more well-formed authigenic quartz silt observed ubiquitously throughout the organic-rich portions of the Marcellus. The presence of abundant authigenic quartz therefore may be indicative of depositional environment.
3. The lattice morphology of nanoquartz may outline potential cleavage planes within organic matter, and therefore may represent the first open and permeable pathways between HC-filled intraorganic nanopores and stimulated fractures connected to the well bore. In this case, latticed nanoquartz may behave as a natural proppant.

FUTURE ANALYSES

Nano-quartz lattices have only been observed in abundance in one sample. To ascertain its prevalence, further analysis is necessary. Samples of variable kerogen type (geochemical and maceral), degree of maturation, and sequence stratigraphy could yield more insight into lattice abundance and generation. Isotope analysis of the authigenic quartz and sphalerite would help determine if the origins are biogenic or hydrothermal; this may be experimentally difficult given the micrometer and nanometer scale

