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Abstract

One of the main problems faced in reservoir characterization is the need to infer subsurface properties from seismic data. Due to scarcity of well-
log information, seismic attributes can be applied as delimiters of zones with similar seismic response that may be due to a set of reservoir
properties. These techniques are called “classification techniques” and are based on the fact that seismic waves collect information from the
physical properties of the subsurface.

Currently, Self-Organizing Maps (SOM) and Applied Neural Networks (ANN) are the two most popular methods in classifying seismic
stratigraphic patterns. We compare the relative power of these two methods against the relatively underutilized Prediction Error Filter (or PEF,
also known as an Autoregressive Filter) to identify user-defined patterns across multiple attribute volumes. The “vector of reference” can either
be a suite of seismic amplitudes (giving rise to horizon-controlled waveform classification), a vector of attributes such as impedance, coherence,
curvature, texture, and amplitude curvature at each sample (giving rise to volumetric classification), or a combination of the two Whatever their
design, these filters are also used to compare and classify the seismic response with respect to a vector of reference. Unlike most
implementations of SOM and ANN, the main advantage of using the PEF is that it provides a measure of confidence in the classification, thereby
providing a measure of uncertainty to the interpretation. In this study, we compare these three methods to a gas shale and Mississippi-lime
targets from the Midcontinent of the United States.
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Abstract

Currently, Self-Organizing Maps (SOM) and Applied Neural Networks (ANN) are the two most popular methods in classifying seismic stratigraphic patterns.
We compare the relative power of these two methods against the relatively underutilized Prediction Error Filter (or PEF, also known as an Autoregressive Filter)
to identify user-defined patterns across multiple attribute volumes. The “vector of reference” can either be a suite of seismic amplitudes (giving rise to horizon-
controlled waveform classification), a vector of attributes such as impedance, coherence, curvature, texture, and amplitude curvature at each sample (giving
rise to volumetric classification), or a combination of the two. Whatever their design, these filters are also used to compare and classify the seismic response
with respect to a vector of reference. Unlike most implementations of SOM and ANN, the main advantage of using the PEF is that it provides a measure of con-
fidence in the classification, thereby providing a measure of certainty to the interpretation. In this study, we compare these three methods to a gas shale and
Mississippi-lime targets from the Midcontinent of the United States.

Introduction

The Mid-Continent Mississippian Lime Play:

A warm, shallow sea with plentiful marine life covered most of Oklahoma during the Mississippian, approximately from 359 Ma to 318 Ma (Elebiju et al.,
2011; Rogers, 2001). An extensive shelf margin existed, trending east-west along the Oklahoma-Kansas border showed on Figure 1 (Watney et al., 2001).

Our dataset is located at Osage County, Oklahoma, which sits on top of the Cherokee Platform and is bounded to the west by the Nemaha Uplift and to the
east by the Ozark Uplift (Johnson, 2008). Figure 2 shows the location of the study area (Elebiju et al., 2011; Walton, 2011). This area has an extensive history
of hydrocarbon exploration and production and nowadays interest has been renewed in the Mississippian Lime play with the advent of horizontal drilling and
hydraulic fracturing.
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Figure 4. a) A representative log highlighting the response of the Mississippian tripolitic chert. Tripolitic chert log re-
sponse is characterized by high porosity, low permeability, low resistivity and low density (Rogers, 2001). b) Interpre-

tation over the well “B” used in this study.
Chert Tripolitic Chert

Figure 5. Photos of a) Limestone, b) Chert, and c) Tripolitic Chert rock samples. These samples are not from the study aréa, but they give an idea of the difference be-
tween the high density, low porosity Limestone and Chert and the lower density, higher porosity Tripolitic Chert (More coins indicate this is the target zone!)
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Methods

Kohonen Self Organized Maps (SOM):

SOM is one of the most commonly used unsupervised pattern recognition techniques that uses a known input dataset to classify, which in this case is used to
classify different rock facies. In this 3D SOM algorithm, the input consists of several mathematically independent volumetric attributes where the number of input at-
tributes determines the mathematical dimensionality of the data. To illustrate this complex algorithm let us imagine a fanciful example. Figure 6a show some differ-
ent fruits. Considering their aspect ratio (shape) and peak frequency (color) and group the fruits according to these properties. After training the fruits get arranged
mainly in three groups as shown in Figure 6b.

Analogy of Fruit example with Tgpining of the PVs Analogy of Fruit example with Trainipg of the PVs
* * W In this case, the hypothesis assumes that magnitude of reflector convergence,

coherency, coherent energy and dip magnitude would be good to differentiate

chert response. The coherency and the dip will better highlight the discontinuities
within the reservoir thus adding a structural feature combined with the irregular

sy aMplitude variation (from coherent energy) of the chert zone. These volumetric
attributes when clustered help to identify the different discontinuities of the litho-

logical settings of the seismic facies within the survey based on the seismic re-

sponse and wavelet form.

2
o
w

. .
© Aspect Ratio ©

1.0 1.0
Red Yellow Green Cyan Blue Red Yellow Green Cyan Blue
Peak frequency Peak frequency Modified from Matos

Figure 6: Example of a Fruits to show an analogy of clustering analysis. (a) The unorganized
fruits. Clustering of the fruits after training considering their attributes (color and aspect ratio).
(Modified after Roy et al., 2011)
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Given a user-defined target zone over a trace corresponding to the well location
or any zone of interest (waveform pattern), the Prediction Error Filters will identify
other zones with similar seismic response. To calculate the PEFs, we apply the
concept of “Auto-regression” to the seismic signal. Specifically, given two vectors
yt and yt-1, we wish to predict a third vector yt+1 using the least-squares method
to find the best scale factor or prediction filter. Waveforms that can be predicted
with less error will be similar to the user-defined waveforms and are highlighted ‘ " 5 , ‘ N
to form a prediction volume. Figure 7 explains more graphically the process of the 2 6 10 '
PEF generation and application. The windows were taken over the interpreted ! d 2

Mississippian Tripolitic chert zone over the well in the amplitude and acoustic im- Figure 7. a) Earth model showing the reference over a well that reaches the reservoir. b)
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Figure 8. Schematic sequence of a) How the Prediction Error Filter vector is obtained, b) Assignment of the prediction values, and c) comparison of a trace and the classification of the
PEF when using a user-defined window over a zone of interest.

Similar to biological neurons in the brain, Artificial Neural Networks are systems for parallel and adaptive processing of information. They are able to create function-
al and related relationships between the input data (Nikravesh and Wong, 2001). Figure 9 shows that the computational neural networks are constituted by simple
units as neurons or cells that are related by weights. These weights modify the inputs so if they reach a certain threshold or critical value, the neuron will be excited
and will produce an output. In this case, the input will be the amplitude and acoustic impedance cubes, and also the waveform classification obtained using the PEF
over the amplitude and acoustic impedance inversion cubes. This process is also supervised because it takes into account picks made by the user over zones in-
terpreted as target (Mississippian tripolitic chert) and zones that can be classified as nhon-economical (Mississippian limestone and chert).
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Figure 9. Neural Network scheme where a) represents a biological neuron with dendrites where several inputs enters the neuron through the synapses. It the inputs excite the neuron
above a given threshold, it will transfer the output to the next neuron or the muscles by the axons (Modified from Golda, 2005). The similar process is shown on b), where the inputs are
the seismic attributes, they will be weighted and if they are summed and if the threshold is crossed, the output will be the classification. In this case this classification is guided by the inter-
preter picks over the data.
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Results
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Figure 10. Interpretation of the low density tripolitic chert above the Mississippian Limestone
near Well B over: a) Amplitude Inline and crossline, b) the response of the PEF over the am-
plitude using a window between both horizons, c) Acoustic impedance, showing the relative
low impedance of the low density tripolitic chert and the high density Mississippian Limestone
below; and d) the PEF classification using the same user-define window over the acoustic im-
pedance inversion cube.
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Figure 12. 3D volume extraction using the PEF classification with the user-defined window
over the ftripolitic chert with low acoustic impedance. The white body indicates zones with
low acoustic impedance and very similar waveform of the acoustic impedance over the well.
For a more accurate and direct relation between the waveform and the rock properties, it is
necessary to crossplot the classification and the well log to better distinguish target zones.

Figure 11. Time slice at 586ms, between the Mississippian tripolitic chert and the Mississippian Lime-
stone near Well B. The blue arrows indicate zones of low impedance that could be related with low
density tripolitic cherts: a) Amplitude b) the response of the PEF over the amplitude using a window be-
tween both horizons showing zones with similar seismic response, c) Acoustic impedance, showing the
relative low impedance of the low density tripolitic chert and the high density Mississippian Limestone
below; and d) the PEF classification using the same user-define window over the acoustic impedance
inversion cube.

Figure 13. In a) stratal slice 16ms above the top &
the Mississippian lime horizon interpreted on the seis-
mic where the bright colors indicate lime rich tight
chert facies (yellow arrows), and tripolitic chert facies
(blue arrows) (After Roy et al., 2010). For the
timeslice at 586ms, b) the Neural Network classifica- Vo
tion where the blue arrows indicate zones classified b) —
as tripolitic chert and the yellow arrows indicate no Ng:‘a':'s:f‘::;‘ﬁg;k ' -
tripolitic chert. It is important to note that this is a visu- :
al classification of the waveform response of the
tripolitic chert and both methods correlates over some
areas pointed with blue arrows. On the other hand,
the Mississippian limestone, indicated by a yellow ar-

row, correlates very well near well B, but the distribu- 2
tion looks different in the north east part of the
timeslice.

. Based on these observations, we expect to find zones of high porosity/low density (low-impedance) predicted from impedance inversion related with the Mississippian

Conclusions

tripolitic chert on the upper part of the Mississippian Limestone interval.

. The prediction Error Filters can accurately predict any feature of interest. This method could be used in combination with other attributes to better discriminate onesj

with similar response. The method “mimics” the interpreter, but of course there are both good and bad interpreters!

. Both the Self Organized Maps and the Prediction Error Filters methods can classify the waveform response and locate zones with similar behavior using attributes.

. The supervised neural networks are a powerful tool during the interpretation process. The dataset used to train the neural networks are vital in this process

L It is important to use the correct combination of attributes in order to better delineate or interpret targeting zones.

Well Data:
. Further well control will im-
prove interpretation
. If available. Horizontal drill-
ing logs.

Prediction Error Filters

. Better classification using
more than one trace.

. Other attributes.

Recommendations and Future Works

r=0.71

Waveform Classification

=

Facies interpretation

Crossploting of the Impedance and PEF

/

Figure 14. Crossplot over the
Mississippian tripolitic chert
bed of the PEF Classification
using the Acoustic Impedance
inversion over the trace corre-
sponding to the well location
and the Bulk Density, and the
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