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Abstract 

 

In unconventional and conventional plays alike, petrophysical attributes such as effective porosity (PHIE), permeability (k), 

brittleness, volume of clay (VCLAY), total organic carbon (TOC), adsorbed gas/original oil in place (OOIP), and water saturation 

(Sw) are key parameters that speak to the viability of entering into that play.  Using abundantly available public well log data, high 

quality petrophysical attributes can be produced and subsequently mapped expeditiously. The ability to distribute these parameters in 

2D mapping yields valuable insight to new and evolving plays.   

 

In house data may be sparse and the ability for evaluating the play may not be recognized by conventional mapping (i.e. 

traditional structure, isopach maps, etc.).  The power of using public data and proprietary petrophysical analysis gives the geoscientist 

an enviable suite of maps upon which critical decisions can be made.  The final result is an accelerated advancement of learning and 

evaluation which will save time in the approval process, mobilization, leasing and E&P. 
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(Dutton, 2005 )

• “Where do I purchase acreage?

• “I’ve drilled a well-what zones will produce?”

• “How do I exploit the acreage I hold?”

• “Where are the fluid contacts?

• “What are the characteristics of the pore size distribution?”

• “What are the reservoir volumes?”

• “Connectivity-how continuous are the reservoirs?”

• “Where are the sweet spots in the field?”

What are Some of the Initial Questions Before Entering into a Play?

Hockley

?



Answer: Integration of Petrophysics with Geologic Attribute Mapping
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Define Project Objectives & Data Acquisition

Proprietary log 

data provided

WEST TX

Start with base map & 

define project objectives*

Acquire public data

(TGS, 2012)

• TGS (6 M wells worldwide)

• MJ Systems (2 M wells)

• State Databases (ex: TX Railroad Commission)

• IHS (2.5 M wells)

• International Databases  

OR



Data Screening-Top Generation

• Log data is 

carefully 

screened by a 

team of 

technicians & 

Petrophysicists

• Geologist 

evaluate if the 

zone of interest 

is present

(Dutton & others 2005)

WOLFCAMP

DEAN

LOWER SPRABERRY

UPPER SPRABERRY

Stratigraphic 

research & top 

generation by 

Geologists & 

Petrophysicist 

After 

acquisition..

DEAN

LOWER SPRABERRY

UPPER SPRABERRY

WOLFCAMP



Data Preparation



Data Preparation
Depth shifting



Data Preparation

SP Baseline

Depth shifting



Data Preparation

SP Baseline

Formation Temp

Calculation (T)

Depth shifting



Data Preparation

SP Baseline

Formation Temp

Calculation (T)

DPHI_LS

RHOB

DPHI from RHOB 

(SS or LS matrix)

Depth shifting



Data Preparation

SP Baseline

Formation Temp

Calculation (T)

DPHI_LS

RHOB

DPHI from RHOB 

(SS or LS matrix)

SPHI_LS

DELTA T

SPHI from ∆∆∆∆T

Depth shifting



Data Preparation

SP Baseline

Formation Temp

Calculation (T)

DPHI_LS

RHOB

DPHI from RHOB 

(SS or LS matrix)

SPHI_LS

DELTA T

SPHI from ∆∆∆∆T

Neutron 

Matrix 

Conversions

Depth shifting



Data Preparation

SP Baseline

Formation Temp

Calculation (T)

DPHI_LS

RHOB

DPHI from RHOB 

(SS or LS matrix)

SPHI_LS

DELTA T

SPHI from ∆∆∆∆T

Neutron 

Matrix 

Conversions

GR correction

GR

GR_CORR

CALIPER

Depth shifting



Data Preparation

SP Baseline

Formation Temp

Calculation (T)

DPHI_LS

RHOB

DPHI from RHOB 

(SS or LS matrix)

SPHI_LS

DELTA T

SPHI from ∆∆∆∆T

Neutron 

Matrix 

Conversions

GR correction

GR

GR_CORR

CALIPER

Depth shifting

RT-true

resistivity corrections

ILD

RT

GRC

SP

SFL



Data Preparation

SP Baseline

Formation Temp

Calculation (T)

DPHI_LS

RHOB

DPHI from RHOB 

(SS or LS matrix)

SPHI_LS

DELTA T

SPHI from ∆∆∆∆T

Neutron 

Matrix 

Conversions

GR correction

GR

GR_CORR

CALIPER

Depth shifting

RT-true

resistivity corrections

ILD

RT

GRC

SP

SFL

WOLFCAMP

LOWER SPRABERRY

UPPER SPRABERRY

DEAN



Log Data Normalization

Log data normalization is 

critical because:

• There are several historical 

logging companies

• Different vintages of logging 

tools-even within the same 

company

• There are differing degrees 

of calibration of logging 

tools as well as engineer 

experience
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Petrophysics- Derivation of Play Drivers 
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Petrophysical Interpretation

RecapF

• From the petrophysical analysis, the 

play drivers we derive are: VCLAY, 

RWG, TOC, VKER, LITHOLOGY, PHIE, 

BVW, BVI, SW,  & PERMIABILITY
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Finally, derivation of 
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play driversF..
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over specific formation

Total cumulative 
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specific formation
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porosity-feet over specific 

formation
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modeled if not acquired

Derivation of 

elastic properties
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Young’s Modulus
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Data Collection & Conditioning

WOLFCAMP

Petrophysical drivers collected 

Geomechanical properties  collected

Listing of data

FINAL MAPPABLE ATTRIBUTES:

Net PHIE-ft (> 7.5%)

Net Permeability-ft (> 100 uD-ft)

Mean Brittleness (dimensionless)

Mean VCLAY (%)

Net TOC (%) (> 2%)

Summation of OIP (MMBO/SEC)

Petrophysical play 

drivers are further  

conditioned into 

mappable attributes

(EX: accumulations, net 

cutoffs & averages)
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Cross-Sections

Cross-sections are generated along 

strike and dip from the petrophysical 

interpretations

Stk 1

Dip 1

NextF

Revisiting the original base map, 

cross-sections are developed that will 

give us an inference of the strike and 

dip of the study area 

Stk 2’ Stk 1’ Dip 1

Lubbock Crosby
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• Contoured maps are generated in 
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and paleogeography.
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• Evaluating the final maps of the study 

area answers our initial questions 

before entering into the play.  
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