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Abstract

Facies models for fluvial depositional systems aim to summarize the sedimentological
features of a specific fluvial type (e.g. braided, ephemeral) through a process of distillation of
several real-world examples, in order to provide conceptual frameworks that are
straightforwardly applicable to subsurface prediction problems. However, such models are
often based on few case studies and are qualitative in nature, thereby resulting in poor
predictive power. Our aim is to generate quantitative depositional models for fluvial systems
that are based on the synthesis of many different case histories and continuously refined by
adding data when they become available.

A relational database for the storage of data relating to fluvial architecture has been devised,
developed and populated with literature- and field-derived data from studies of both modern
rivers and their ancient counterparts preserved in the stratigraphic record. The database
scheme characterizes fluvial architecture at three different scales of observation,
corresponding to many genetic-unit types (large-scale depositional elements, architectural
elements and facies units), recording all the essential architectural features, including style of
internal organization, geometries, spatial distribution and reciprocal relationships of genetic
units. The database classifies datasets - either in whole or in part - according to both
controlling factors (e.g. climate type, tectonic setting) and context-descriptive characteristics
(e.g. river pattern, dominant transport mechanism). The data can therefore be filtered on the
parameters according to which they are classified, allowing the exclusive selection of data
relevant for the model.

To demonstrate the value of the approach, an example synthetic depositional model for
braided fluvial systems in arid/semiarid basins is presented here, and some of its features are
compared with analogous data from other settings. Resultant models are based on outcrop
studies of the Permian Organ Rock Fm., Triassic Moenkopi Fm., Jurassic Kayenta Fm. (all
from Utah), the Chester Pebble Beds Fm. and Helsby Fm. (both Cheshire Basin, UK),
together with literature-derived data. In comparison to traditional facies models, the improved
usefulness of synthetic models derived from this database approach to subsurface predictions
is evident, as their quantitative content is particularly suitable to inform well-to-well
correlations and to constrain stochastic reservoir models.
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ABSTRACT

Facies models for fluvial depositional systems aim to summarize the sedimentological features of a specific
fluvial type (e.g. braided, ephemeral) through a process of distillation of several real-world examples, in order to
provide conceptual frameworks that are straightforwardly applicable to subsurface prediction problems.
However, such models are often based on few case studies and are qualitative in nature, thereby resulting in
poor predictive power. Our aim is to generate quantitative depositional models for fluvial systems that are based
on the synthesis of many different case histories and continuously refined by adding data when they become
available.

Arelational database for the storage of data relating to fluvial architecture has been devised, developed and
populated with literature- and field-derived data from studies of both modern rivers and their ancient
counterparts preserved in the i ic record. The datab scheme characterizes fluvial architecture at
three different scales of observation, corresponding to many genetic-unit types (large-scale depositional
elements, architectural elements and facies units), recording all the essential architectural features, including
style of internal organization, geometries, spatial distribution and reciprocal relationships of genetic units. The

database classifies datasets — either in whole or in part — according to both controlling factors (e.g. climate type,
tectonic setting) and context-descriptive characteristics (e.qg. river pattern, dominant transport mechanism). The
data can therefore be filtered on the parameters according to which they are classified, allowing the exclusive
selection of data relevant for the model.
To demonstrate the value of the approach, an example synthetic depositional model for braided fluvial
in arid; iarid basins is p! d here, and some of its features are compared with analogous data
from other settings. Resultant models are based on outcrop studies of the Permian Organ Rock Fm. and
Jurassic Kayenta Fm. (both from Utah, USA), the Chester Pebble Beds Fm. and Helsby Fm. (both Cheshire
Basin, UK), together with literature-derived data. In comparison to traditional facies models, the improved
usefulness of synthetic models derived from this database approach to subsurface predictions is evident, as
their quantitative content is particularly suitable to inform well-to-well correlations and to constrain stochastic
reservoir models.
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FAKTS GENETIC UNITS: classifications Facies units

Code |Legend | Lithofacies type
Gravel to boulders - undefined structure

In FAKTS, facies units are defined tic bodi

by homogeneous lithofacies type down to the decimetre scale,
bounded by second- or higher-order (Miall 1996) bounding
surfaces. thhofacles types are based on textural and structural
ion follows Miall's (1996) scheme,
with minor additions (e.g. texture-only classes — gravel to boulder,
sand, fines — for cases where information regarding sedimentary
structures is not provided).

Depositional elements

Matrix-supported massive gravel

Matrix supported graded gravel

Depositional elements are classified as channel- complex or floodplain
elements. Ch: represent ch; defined on
the basis of flexible but unambiguous geometrical criteria, and are not
related to any particular genetic significance or spatial or temporal
scale; they range from the infills of individual channels, to compound,
multi-storey valley-fills. This definition facilitates the inclusion of
datasets that are poorly characterized in terms of the geological
meaning of these objects and their bounding surfaces (mainly
subsurface datasets).

Floodplain into elements is 1t to
channel-complex deﬂnmon as floodplain deposits are subdivided

tothe lateral tol

Clast-supported massive gravel

Clast-supported inversely-graded gravel

Horizontally-bedded or imbricated gravel

Trough cross-stratified gravel

Planar cross-stratified gravel

Sand - undefined structure

i I 8 il 7
Rakaia River channel-belt (New Zealand.) From Google Earth Trough cross-stratified sand

Planar cross-stratified sand

Architectural elements

Rippl laminat
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defined a of a fluvial system with the Horizontally-laminated sand
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Laterally accreting macroform
D & laterally ing
Sediment gravity-flow body

make them more consistent in terms of their geomorphological
, so that working with datasets from modern rivers is
easier. Architectural elements descnbed according to any other
following

Soft-sediment deformed sand

Fines (silt, clay) - undefined structure

scheme are o bott
the criteria outlined by Miall (1996) forthelr definition.

Laminated sand, silt and clay

Scour-hollow fill

Laminated to massive silt and clay

Abandoned-channel fill

Massive clay and silt

Levee

Fine-grained root bed

Overbank fines

< - Paleosol carbonate
Sandy sheetflood-dominated floodplain

Coal or carbonaceous mud Above: example sandy facies units from the Lower Jurassic Kayenta

Formation inthe Moab area (SE Utah, USA).
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Crevasse channel

Undefined facies

Crevasse splay

Floodplain Lake
| Coal-body
J Undefined elements

Above: example preserved architectural elements (DA and LA barforms)
from the Lower Jurassic Kayenta Formation at Sevenmile Canyon (SE
Utah, USA).
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A database-oriented field technique was developed and tested during field data collection in SE Utah (U.S.A.), mapping the
fine-grained fluvial sandstone elements, with minor occurrences of associated argillaceous fluvial and aeolian elements,
developed in the overall arid/semiarid climatic context of the Glen Canyon Group. Interpreted architectural elements were
indexed by numeric identifers, some of thei properties (element ype and dimensional parameters) were tabulated, and their
spalial arrangement was sketched ~ in form of cross sectional and planform sketches ~ including bounding surface order alon: imilal in
(scheme by Miall, 1996) and paleocurrent information. Facies units were also indexed and their properties (facies type, were used to keep track of lhe transitions between facies units and of the Con(a\r\mem of facies units m
dimensional parameters and identifier of the parent architectural element within which they occur) tabulated. As the number of
facies units per outcrop is far larger than the number of , the reciprocal facies units  the 'table-and-di -
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FAKTS OUTPUT 3: genetic-unit transition statistics

FAKTS can be Interrogated to derive data on ocourrences of transitions between genetic units, in order to obtain a quantitative |
description o spatial depositional trends in the form of a transition count matrix. To further characterize genetic units intenally,
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estimation of volumetric_proportions. The
Kayenta Fm. architectural panel depicted above
(outcrop LCO3 at Sevenmile Canyon —SE Utah)
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A relational database for the digitization of fluvial architecture: toward quantitative synthetic depositional models
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EXAMPLE ARCHITECTURAL STYLES
FROM THE JURASSIC KAYENTA
FORMATION AND THE PERMIAN

ORGAN ROCK FORMATION
(SE UTAH, USA)

Above: Kayenta Fm. at Sevenmile Canyon (SE Utah).
Below: Organ Rock Fm. at Indian Creek (SE Utah).

Sheetflood-dominated (and partially aeolian) distal portion of the Organ Rock Fm., at Farley Canyon (SE Utah).
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