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Abstract 
 
Fluvial systems possess a range of scaling relationships that reflect drainage-basin controls on water and sediment flux. In 
hydrocarbon exploration and production, scaling relationships for fluvial deposits can be utilized to constrain environmental and 
sequence-stratigraphic interpretations, as well as predict the lateral extent of fundamental reservoir flow units. This study documents 
the scales of channel fills, point and channel bars, channel belts, and coastal-plain incised valleys from well-constrained Quaternary 
fluvial systems. 
 
Data on channel-fill and point-bar to channel-belt scales were compiled from published thicknesses for sinuous single-channel 
systems, with spatial dimensions measured from GoogleEarth. Fluvial systems included in this database span 3 orders of magnitude in 
drainage area, from continental-scale systems to small tributaries, and span tropical to sub-polar climatic regimes. Channel-fill and 
channel-belt scales were measured upstream from backwater effects, so as to minimize inclusion of distributive, highly avulsive 
systems. Scales of incised valleys were derived from well-constrained published examples that are known to have formed during the 
last 100 kyr glacio-eustatic cycle. 
 
All scaling relationships are represented by statistically-significant power laws, with absolute dimensions that scale to drainage area, 
but distinct clustering occurs between channel fills, point bars and channel belts, and incised valleys. Mean width-to-thickness ratios 
for channel fills are ~10:1, whereas point bars commonly range from 70-250:1. Coastal-plain incised valleys from the last glacio-
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eustatic cycle range from 25-150 m in thickness, and a few kilometers to more than 80 km in width, with width-to-thickness ratios of 
~600-800. 
 
Scales of Quaternary examples compare well with previous compilations of channel-belt scales interpreted in the ancient record, and 
with theory. However, the smallest Quaternary incised valleys in our database reside in the uppermost part of the domain of published 
compilations of ancient incised valleys, with ancient examples overlapping significantly with both interpreted channel fills and 
channel belts. When interpreted within the context of this database from modern systems, we suggest many ancient examples may 
have been overinterpreted, which in turn suggests a persistent lack of objective criteria for differentiating channel fills, channel belts, 
and incised valleys. 
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FLUVIAL SCALING RELATIONSHIPS 

Travis Peak Fm., Zone 1, original interpretation by R.S. Tye 

reinterpretation by Miall (2006) using scaling relationships 

50
 m

 

well-spacing ranges from 0.8-2.2 km, with a mean of 1.54 km 

50 km 
7 m deep and 420 m wide 

7 m deep and 1750 m wide 

Channel-Belt Sand Bodies – Significance of Scaling Relationships 
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FLUVIAL SCALING RELATIONSHIPS 
Motivations – Recent Compilation by Gibling (2006) 

Compilation of scales 
in published literature 
 
Scale domains are 
very different from 
modern systems, 
much larger range 
 
Raises issue of how 
original data were 
interpreted, and 
criteria that were used 
 
Need to cross-check 
with modern systems, 
where dimensions are 
an observation, not 
interpretation 
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FLUVIAL SCALING RELATIONSHIPS 
Goals – Quantify Scales of 1st Order Fluvial Elements 
 Construct a database of modern channel-belt and channel-fill scales 

– Google Earth Approach:  Scour literature and global landsat / DEM 
– mature point bars, recently cutoff or close to cutoff  
– point bars with thickness measurement, i.e. core through deposit, 

measure width, thickness, asymetry 
 Construct dataset of Late Quaternary incised-valley scales 

– coastal-plain valleys with robust geochronological control 

channel fills and 
channel-belt margins 

are fundamental barriers 
to flow 

after Jordan and Pryor (1992) 

basal scour 
surface 

point-bar 
sands 

channel-fill 
muds 
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FLUVIAL SCALING RELATIONSHIPS 
Bar Accretion and Large-Scale Inclined-Strata Sets 

5-7 m 

exhumed acrretionary topography, 
Triassic Chinle Formation,, Arizona 

1 km 

LIDAR Image, 
False River, 
Louisiana 

large-scale inclined strata set, 
lower Eocene, Tremp-Graus basin 

3d seismic slice, illustrating 
accretionary signature 

20 m 

1 km 

from Reijenstein et al. (2011) 
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FLUVIAL SCALING RELATIONSHIPS 

bankfull 
channel 

channel fill 
(a deposit) 

Definitions – Channels, Channel Fills, and Channel Belts 

Qbf 

large-scale inclined strata sets 
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FLUVIAL SCALING RELATIONSHIPS 

 Channel-belt and channel-fill scales from 38 modern rivers 
– periglacial to tropical 
– drainage areas = 250 to 3,000,000 km2 

– 124 measured meanders 
 Incised-valley Scales from 10 Late Quaternary Systems 

– drainage areas = 50,000 to 3,000,000 km2 

Dataset 
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FLUVIAL SCALING RELATIONSHIPS 
Methodology: Wabash River Example 

 Thickness: 9 m 
 Point bar areal extent: 0.8 km2 

 Abandoned Channel Width: 190 m 
 Translation Length: 1450 m 
 Non-translation length: 650 m 
 Drainage Basin:  75,700 km2 

Jackson (1976) 

GRAPHIC 
COLUMN 
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FLUVIAL SCALING RELATIONSHIPS 

Drainage Area (km2) 

1st Order Relationship 
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Scaling of Channel Belts 

w/t ~ 200:1 
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FLUVIAL SCALING RELATIONSHIPS 

1 m 
Kolla et al., 2007 Donselaar and Overeem, 2008 Blackhawk Fm 

Examples from other studies 

Heterolithic Abandoned Channel Fills 
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Seismic examples 
Kolla et al. 2007, 
Willis et al. 2007, 
Miall, 2002; 
Reijenstein et al. 2011 

Castlegate-Blackhawk 

Channel Depth (m) 

w/t ~ 10-15:1 
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FLUVIAL SCALING RELATIONSHIPS 

Low-Net End Member 

High-Net End Member 

• Highly heterolithic 
• Ribbon sands and thin sheet sands 

encased in muds 
• Dominated by avulsion processes 
• Highly aggradational stacking 

• Amalgamated sand bodies 
• Channel fills and channel-belt margins 

are dominant barriers to flow 
• Dominated by channel-belt migration 
• Fluvial processes confined to discrete 

valley 
• Degradational or low aggradational 

stacking 

Fundamental Contrasts in Channel-Belt Scales: Why?? 
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FLUVIAL SCALING RELATIONSHIPS 
Fundamental Contrasts in Channel-Belt Scales: Backwater Effects 
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FLUVIAL SCALING RELATIONSHIPS 

Low-Net End Member 

High-Net End Member 

• Highly heterolithic 
• Dominated by avulsion processes within 

backwater length 
• Highly aggradational stacking 
• Distributary channel belts w/t = 20-50:1 

• Amalgamated sand bodies 
• Channel fills and channel-belt margins          

are dominant barriers to flow 
• Dominated by channel-belt migration 
• Fluvial processes confined to discrete       

valley 
• Degradational or low aggradational       

stacking 
• Channel belts w/t = 200:1, channel fills 15:1 

Fundamental Contrasts in Channel-Belt Scales: Why?? 
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FLUVIAL SCALING RELATIONSHIPS 

Gibling (2006) data 

Scales of Incised Valleys – Published Ancient 
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FLUVIAL SCALING RELATIONSHIPS 
Significance of Incised-Valley Scales to Interpretation 
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FLUVIAL SCALING RELATIONSHIPS 
Coastal-Plain Incised Valleys - Lower Mississippi River 

based on Blum et al. (2000), Rittenour et al. (2005, 2007), and Blum et al. (2008) 
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FLUVIAL SCALING RELATIONSHIPS 

A A’ 

50-35 ka 
33-24 ka 

22-18 ka 

>80 ka 

Coastal-Plain Incised Valleys - Lower Trinity River, Texas 
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FLUVIAL SCALING RELATIONSHIPS 
Scales of Incised Valleys – Published Ancient vs. Late Quaternary 
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FLUVIAL SCALING RELATIONSHIPS 
Scales of Incised Valleys, Channel Belts, and Channel FIlls 
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FLUVIAL SCALING RELATIONSHIPS 
Summary 

Fluvial stratigraphic elements exhibit scaling relations that 
are consistent across a range of river system scales 

• Channel-belt sand bodies range from ~100-300:1, with a mean of ~200 
• Distributary channel-belts range from ~20-50:1  
• Abandoned channel-fills range from 10-30:1 
• Each element occupies the same thickness domain, because of scaling to 

bankfull discharge, but differ in width domains due to lateral migration 
 

• Coastal-plain incised valleys range from 500-800:1 
 
Scaling relations defined from modern systems commonly 
differ from scales interpreted in the stratigraphic record 

• Scaling relationships from modern systems are observations, not 
interpretations, and tied to process-based understanding of system 
parameters (discharge, sediment flux) 

• Can be used as an additional set of recognition criteria to guide, cross-
check, or calibrate interpretations in outcrop or subsurface data 
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