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Abstract 
 
The link between tectonics and sedimentation is arguably best exemplified in deep-marine foreland basin systems where structural 
deformation is contemporaneous with turbidite sedimentation. The distribution and modulation of sedimentary attributes defining 
deepwater sedimentation regions record changes in paleo-gradient framed by five orders of tectonic deformation. Second-order 
foreland basin systems consist of third-order wedge-top, foredeep, forebulge, and back-bulge structural domains. Fourth-order 
structural growth of a submarine anticline segments and transforms the third-order foredeep into the wedge-top structural domain. The 
Coniale Anticline manifests a fourth-order structure containing attendant fifth-order mass-transport-deposits defining four 
sedimentation regions represented by pre- and syn-kinematic turbidite distributions across the structure. 
 
Tabular lobes and fine-grained carbonate drapes are the dominant sedimentary bodies in an overfilled basin, where lateral expansion 
of large turbidity currents scale to the basin width. Consequently, sedimentation units are equivalent to sedimentary bodies, 
simplifying the number of sedimentary attributes required for analysis. Wavy stratification is moderately subordinate to structureless 
sandstone in pre-kinematic turbidite sedimentation units which contain thinner mudstone caps, but separated by thicker calcareous 
mud drapes. There is more uniformity in these attributes across the structure (~5 km distance). By contrast, syn-kinematic turbidites 
show more variation in component facies, sedimentation unit thickness, and cyclic modulation of sedimentary bodies across the 
structure, including the addition of mass-transport deposits on the east flank of the structure. 
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Paleo-gradients of fourth- and fifth-order tectonic surfaces are determined from a partial 3D restoration of the structure and correlate 
structural growth to turbidite distribution and modulation. Fourth-order structural growth segments foreland domains and combined 
with fifth-order structure-generated surfaces explains changes in the four sedimentation regions. This suggests that lower resolution 
structural features can be used to assess smaller reservoir-scale architecture relevant to subsalt prediction in the Gulf of Mexico.  
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The link between tectonics and sedimentation is arguably best exemplified in deep-marine foreland basin systems where structural 
deformation is contemporaneous with turbidite sedimentation. The distribution and modulation of sedimentary attributes defining 
deep-water sedimentation regions record changes in paleo-gradient framed by five orders of tectonic deformation. Second-order fore­
land basin systems consist of third-order wedge-top, foredeep, forebulge, and back-bulge structural domains. Fourth-order structural 
growth of a submarine anticline segments and transforms the third-order foredeep into the wedge-top structural domain. The Coniale 
anticline manifests a fourth-order structure containing attendant fifth-order mass-transport-deposits defining four sedimentation 
regions represented by pre- and syn- kinematic turbidite distributions across the structure. 

Tabular lobes and fine-grained carbonate drapes are the dominant sedimentary bodies in this overfilled basin, where lateral expan­
sion of turbidity currents scale to the basin width. Consequently, sedimentation units are equivalent to sedimentary bodies. Wavy strati­
fication is moderately subordinate to structure less sandstone in pre-kinematic turbidite sedimentation tmits which contain thinner 
mudstone caps, but separated by thicker calcareous mud drapes. There is more uniformity in these attributes across the structure. By 
contrast, syn-kinematic turbidites show more variation in component facies, sedimentation unit thickness, and modulation of sedimen­
tary bodies across the structure. 

Paleo-gradients of fourth- and fifth- order tectonic surfaces will be examined from a 3D restoration of the structure and cross­
referenced with turbidite distribulion and modulation. Comparing tectonic evolution to sedimentation heterogeneity will test wether 
lower resolution structural features can be used to assess reservoir-scale architecture relevant to subsalt prediction in the Gulf of Mexico. 

Introduction: 
The Problem: 

Can low magnitude, high frequency physical growth of n submarine fnult propagation fold generate a recoguizable response in turbidite architecture? 
High order modulation in sedimentary attributes documented across time space domains. 

Multiple possibilities on forcing functions to drive sedimentary modulation 
Alpine vs. Apeninne source: Event Frequency and Magnitude 

wsw ~ Collision of Eurasian Plate with Adrian microcontinent ENE Tectonic Orders of Deformation Affecting Gradient: 
• Five Orders 

3rd Order Ligurian Nappe 2nd order: A en nine Foreland Basin 3~ds~~:r ~o~~~~~o~aren;)ce;) 

• Correlate to 5 gradient types (Gardner, 2011) 
• Process = Cycles of structural growth and quiescence 
• Response = sedimentary attributes 
• Marnoso-arenacea: Outcrop laboratory 

Define Sedimentary Response by Time­
Space Domains 

• Foreland basin system = dynamic 

• Phases of orogeny correlate to sedimentary energy 

• Study area examines evolution from foredeep to 
wedge top domain during steady state phase of 
Alpine orogeny (Bernet et aI., 2001). 
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• Intraclasts: Bed amalgamation vs. flow reflection 

• Provenance: Two sources 
• Calcareous mudrocks = pelagic deposition 
• Hummocky-swaley cross stratification = shallow water, not flow reflection 

Range and Importance of Hydrodynamic Facies in Basin Plain Setting 
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Interpretation: Silty sandstone 
"grunge". Turbulent suppres­
sion by cohesion from increased 
silt concentration by hydraulic 
fractionation in source-distal 
flow. 

Interpretation: Hemipelagic 
deposition from tail end of late 
stage low density turbidity cur­
rent where suspension settling 
rates> shear velocity. 

Interpretation: Pelagic depo­
silion from paralochlhonous 
carbonate mud sources on 
local intrabasinal highs. 



Key Concepts 
• Hanging wall of Monte Castellaccio Thrust 
• Long correlation lengths of both tu rbidi te and debrite sandstones 
• Lower frequency and magnitude of sedimentati on events: 

• Higher frequency of pelagic mudrocks and wavy stratification 
• Low lateral facies evolu tion in turbidite and debrite event beds 
• High frequency vertical cyclicity weakly expressed 
• Low spatial-temporal attribute modulation consistent with flat low gradient basin plain interpretation 
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Key Concepts 
• Footwall of Monte Castellacdo Thrust 
• High fidelity correlation of sedi mentary attri butes with Domain 1 
• Lower net/gross =. down-flow evolution 
• Higher proportion of pelagic mudrocks 
• Higher frequency of wavy stratification at bed tops, often bioturbated 
• I o w spatial-temporal attribute modulation across modem structme is consistent with flat low grad ient basin plain interpretation 
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Key Concep ts 
• Hanging wall of Monte Castel1accio Thrust 
• Thick bedded, sandstone dominated wedge top basin 

• High net/gross 
• Structureless and space stratified sandstone dominant, wavy and plane+paral\eJ sandstones subordinate 
• Amalgamation surfaces frequent; intraclast horizons = amalgamations, not sandwich beds 
• No calcareous mudrocks 
• Energy jncreases bllt modillation of sedimentary attriblltes is limited 
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Conclusions 
• Stratigraphic metrics defining each domain record multiple orders of tectonic deformation 
• Domains 1 and 2 record flat basin plain modified only by 3rd order tectonic evolution: 

• Monte Castellaccio thrust not emergent 
• Remarkable continuity of process facies, sedimentation units and sedimentary bodies: 

depositional topography + climate + far-field tectonics> local tectonic gradients as forcing function 

• Domains 3 and 4: Decoupled relationship of syn-kinematically developing wedge top to foredeep domains: 
• Domain 3 = high frequency and magnitude turbidite events bypassing fine grained sediment 

• Lack of high order stratigraphic modulation 
• Domain 4 = High order modulation of turbidite event frequency and magnitude combined with MTD detachments and facies diversity 

depositional topography + climate + far-field tectonics < local tectonic gradients as forcing function 

Current Work: Structural Modeling 

Use 3D structural restoration of Coniale Anticline to 
restore to Domain 1 time of a undeformed basin plain 

• Test validity of structural motion to accommodate gradient 
modifications 

• Input horizons from lithostratigraphic mapped units, time con­
strained by biostratigraphic markers. 

• Populate deformed model with measured section data and high 
resolution mapped horizons from photopanels projected onto 
DEM surface 

• Project into cross section network and interpolate horizons 

• Retrodeform according to time steps defined by: 

• Low order = Lithostratigraphic chronostratigraphy 

• High order = mapped energy cycles of each domain 

Workflow of structural 

restoration project 

3D model of surface geology in the study area 

Does Paleo gradient evolu­
tion match stratigraphic 

energy evolution? 

Structural Evolution Model: Post Domain 1 and 2 Deposition GOM Application: 
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• Deepwater turbidite depositional 

systems from Paleogene to 
Miocene 

• Allochthonous salt coverage 
increases uncertainty in 
subsalt interpretation 

• Visible structures that can be 
mapped 

• Use structural hierarchy for 
prediction 

• Sedimentary response docu 
mented at Coniale anticline = 

pattern for subsalt prediction. 
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