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Abstract

The link between tectonics and sedimentation is arguably best exemplified in deep-marine foreland basin systems where structural
deformation is contemporaneous with turbidite sedimentation. The distribution and modulation of sedimentary attributes defining
deepwater sedimentation regions record changes in paleo-gradient framed by five orders of tectonic deformation. Second-order
foreland basin systems consist of third-order wedge-top, foredeep, forebulge, and back-bulge structural domains. Fourth-order
structural growth of a submarine anticline segments and transforms the third-order foredeep into the wedge-top structural domain. The
Coniale Anticline manifests a fourth-order structure containing attendant fifth-order mass-transport-deposits defining four
sedimentation regions represented by pre- and syn-kinematic turbidite distributions across the structure.

Tabular lobes and fine-grained carbonate drapes are the dominant sedimentary bodies in an overfilled basin, where lateral expansion
of large turbidity currents scale to the basin width. Consequently, sedimentation units are equivalent to sedimentary bodies,
simplifying the number of sedimentary attributes required for analysis. Wavy stratification is moderately subordinate to structureless
sandstone in pre-kinematic turbidite sedimentation units which contain thinner mudstone caps, but separated by thicker calcareous
mud drapes. There is more uniformity in these attributes across the structure (~5 km distance). By contrast, syn-kinematic turbidites
show more variation in component facies, sedimentation unit thickness, and cyclic modulation of sedimentary bodies across the
structure, including the addition of mass-transport deposits on the east flank of the structure.
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Paleo-gradients of fourth- and fifth-order tectonic surfaces are determined from a partial 3D restoration of the structure and correlate
structural growth to turbidite distribution and modulation. Fourth-order structural growth segments foreland domains and combined
with fifth-order structure-generated surfaces explains changes in the four sedimentation regions. This suggests that lower resolution
structural features can be used to assess smaller reservoir-scale architecture relevant to subsalt prediction in the Gulf of Mexico.
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Abstract:

The link between tectonics and sedimentation is arguably best exemplified in deep-marine foreland basin systems where structural
deformation is contemporaneous with turbidite sedimentation. The distribution and modulation of sedimentary attributes defining
deep-water sedimentation regions record changes in paleo-gradient framed by five orders of tectonic deformation. Second-order fore-
land basin systems consist of third-order wedge-top, foredeep, forebulge, and back-bulge structural domains. Fourth-order structural
growth of a submarine anticline segments and transforms the third-order foredeep into the wedge-top structural domain. The Coniale
anticline manifests a fourth-order structure containing attendant fifth-order mass-transport-deposits defining four sedimentation
regions represented by pre- and syn- kinematic turbidite distributions across the structure.

Tabular lobes and fine-grained carbonate drapes are the dominant sedimentary bodies in this overfilled basin, where lateral expan-
sion of turbidity currents scale to the basin width. Consequently, sedimentation units are equivalent to sedimentary bodies. Wavy strati-
fication is moderately subordinate to structureless sandstone in pre-kinematic turbidite sedimentation units which contain thinner
mudstone caps, but separated by thicker calcareous mud drapes. There is more uniformity in these attributes across the structure. By
contrast, syn-kinematic turbidites show more variation in component facies, sedimentation unit thickness, and modulation of sedimen-
tary bodies across the structure.

Paleo-gradients of fourth- and fifth- order tectonic surfaces will be examined from a 3D restoration of the structure and cross-
referenced with turbidite distribution and modulation. Comparing tectonic evolution to sedimentation heterogeneity will test wether
lower resolution structural features can be used to assess reservoir-scale architecture relevant to subsalt prediction in the Gulf of Mexico.

Introduction:
The Problem:

Can low magnitude, high frequency physical growth of a submarine fault propagation fold generate a recognizable response in turbidite architecture?
High order modulation in sedimentary attributes documented across time space domains.
Multiple possibilities on forcing functions to drive sedimentary modulation
Alpine vs. Apeninne source: Event Frequency and Magnitude
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e Five Orders sidorerLigugan Napco 2nd order: Apennine Foreland Basin system Foredeep
e Correlate to 5 gradient types (Gardner, 2011)

e Process = Cycles of structural growth and quiescence
e Response = sedimentary attributes

® Marnoso-arenacea: Outcrop laboratory
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Key Concepts

* Intraclasts: Bed amalgamation vs. flow reflection

* Calcareous mudrocks = pelagic deposition
* Hummocky-swaley cross stratification = shallow water, not flow reflection
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* Hanging wall of Monte Castellaccio Thrust

* Long correlation lengths of both turbidite and debrite sandstones

* Lower freq and itude of sed

ion events:

* Higher frequency of pelagic mudrocks and wavy stratification
© Low lateral facies evolution in turbidite and debrite event beds
* High frequency vertical cyclicity weakly expressed
* Low spatial-temporal attribute modulation consistent with flat, low gradient basin plain interpretation
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Tobler’s first law of raphy:
“Near things are more related than distant things”
* 21 kilometer distance between domains 1 and 2

« Similarity in process facies
* Wavy stratification
* Structureless sandstone
* Muddy sandstones

* Correlation of sedimentation events
* 11 events correlated
 Sand thins, muds thicken in down-flow direction
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4 Conclusions

e Stratigraphic metrics defining each domain record multiple orders of tectonic deformation
® Domains 1 and 2 record flat basin plain modified only by 3rd order tectonic evolution:
® Monte Castellaccio thrust not emergent

* Remarkable continuity of process facies, sedimentation units and sedimentary bodies:
depositional topography + climate + far-field tectonics > local tectonic gradients as forcing function

* Domains 3 and 4: Decoupled relationship of syn-kinematically developing wedge top to foredeep domains:
* Domain 3 = high frequency and magnitude turbidite events bypassing fine grained sediment
* Lack of high order stratigraphic modulation
* Domain 4 = High order modulation of turbidite event frequency and magnitude combined with MTD detachments and facies diversity
depositional topography + climate + far-field tectonics < local tectonic gradients as forcing function

Current Work: Structural Modeling

Use 3D structural restoration of Coniale Anticline to
restore to Domain 1 time of a undeformed basin plain

e Test validity of structural motion to accommodate gradient
modifications
¢ Input horizons from lithostratigraphic mapped units, time con-
strained by biostratigraphic markers.
® Populate deformed model with measured section data and high
resolution mapped horizons from photopanels projected onto
DEM surface

® Project into cross section network and interpolate horizons

Academic License

® Retrodeform according to time steps defined by:
® Low order = Lithostratigraphic chronostratigraphy 3D model of surface geology in the study area
® High order = mapped energy cycles of each domain
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