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Abstract 

 
An assessment unit (AU) for undiscovered continuous “shale” gas in Lower Cretaceous (Aptian and Albian) and basal Upper Cretaceous 
(lower Cenomanian) rocks in the USA onshore Gulf of Mexico coastal plain recently was defined by the U.S. Geological Survey (USGS). 
The AU is part of the Upper Jurassic-Cretaceous-Tertiary Composite Total Petroleum System (TPS) of the Gulf of Mexico Basin. Definition 
of the AU was conducted as part of the 2010 USGS assessment of undiscovered hydrocarbon resources in Gulf Coast Mesozoic stratigraphic 
intervals. The purpose of defining the Greater Gulf Basin Lower Cretaceous Shale Gas AU was to propose a hypothetical AU in the 
Cretaceous part of the Gulf Coast TPS in which there might be continuous “shale” gas, but the AU was not quantitatively assessed by the 
USGS in 2010. 
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Introduction 

 
The Greater Gulf Basin Lower Cretaceous Shale Gas assessment unit (AU) (Figure 1) was defined as part of an assessment of undiscovered 
hydrocarbon resources in Jurassic and Cretaceous stratigraphic intervals of the Gulf Coastal Plain and State waters that the USGS completed 
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in 2010 (Dubiel et al., 2010, 2011). The AU includes potential continuous accumulations in the Lower Cretaceous Sligo Formation, and the 
Trinity, Fredericksburg, and Washita Groups (Figure 2). The AU excludes continuous resources in the Pearsall Formation in the Maverick 
Basin area of south Texas (Figure 3), which were separately assessed [Maverick Basin Pearsall Shale Gas AU (50490165); Dubiel et al., 
2011; Hackley, 2012]. Also excluded are undiscovered resources in separately assessed conventional accumulations of the same 
lithostratigraphic section. The Greater Gulf Basin Lower Cretaceous Shale Gas AU lies within the Upper Jurassic-Cretaceous-Tertiary 
Composite Total Petroleum System of the Gulf of Mexico Basin, defined by the USGS in 2007 (Dubiel et al., 2007). The 2010 assessment 
updated portions of the 1995 USGS assessment of the Gulf of Mexico coastal region (Schenk and Viger, 1996a,b; USGS National Oil and 
Gas Resource Assessment Team, 1995).  
 

Assessment Methodology 

 
Total Petroleum System  

 
The USGS Energy Resources Program periodically conducts geologically based assessments of the quantities of technically recoverable 
undiscovered oil and gas that have the potential to be added to proved reserves in the United States. These assessments are based on the 
definition of a total petroleum system (TPS) framework (Magoon and Dow, 1994; Schmoker and Klett, 1999), integrating an analysis of 
geologic elements such as hydrocarbon source rocks (source rock maturation, hydrocarbon generation and migration), reservoir rocks 
(sequence stratigraphy and petrophysical properties), and hydrocarbon traps (trap formation and timing). Using these criteria, the USGS 
defined the lateral extent of the Upper Jurassic-Cretaceous-Tertiary Composite TPS (Dubiel et al., 2007) that extends around the Gulf of 
Mexico Basin, including portions of both the United States and Mexico. USGS assessments include only undiscovered oil and gas resources 
in that portion of the TPS that lies onshore and in State waters of the United States. 
 
The lithostratigraphic lower limit of the AU is the base of the Sligo Formation. The lithostratigraphic upper limit of the AU is the mid-
Cenomanian unconformity at the top of the Washita Group [using the mid-Cenomanian unconformity as the upper limit extends the AU into 
the basal Upper Cretaceous; however, the name Greater Gulf Basin Lower Cretaceous Shale Gas AU (Dubiel et al., 2011) was used for 
simplicity]. Therefore, in terms of chronostratigraphic limits, the AU encompasses continuous accumulations in Hauterivian (?) to Lower 
Cenomanian rocks in the onshore Gulf Coast, excluding the Pearsall Formation of the Maverick Basin in south Texas. Potential continuous 
accumulations in the Travis Peak (Hosston) Formation previously were considered by Bartberger et al. (2003) and also were not included in 
the Greater Gulf Basin Lower Cretaceous Shale Gas AU. The primary units in the AU expected to contain undiscovered continuous 
hydrocarbon accumulations are, in ascending stratigraphic order: unnamed “shales” from the principally carbonate Sligo Formation, the Pine 
Island and Bexar shales of the Pearsall Formation, unnamed “shales” from the Glen Rose Limestone and equivalent Rodessa and 
Mooringsport Formations, the Kiamichi Formation of the upper Fredericksburg Group and equivalent McKnight Formation of the Maverick 
Basin, and the Del Rio Formation and equivalent Grayson Shale of the Washita Group. Also considered but not described in detail herein are 
the Walnut Clay of the Fredericksburg Group, and the Duck Creek Limestone, Denton Clay, Pawpaw Formation, Weno Limestone, and 
Maness Shale of the Washita Group. In general, the Lower Cretaceous section is dominated by carbonates in the northern Gulf of Mexico 



  

Basin (McFarlan and Menes, 1991) and most of the “shales” present in the section are non-fissile argillaceous limestones (e.g., Hackley, 
2012; Enomoto et al., 2012).  
 
The updip boundary of the AU follows the TPS boundary northeastward from the USA-Mexico border in Texas to Arkansas (Figure 1). The 
updip boundary across the Mississippi Embayment in Louisiana, Mississippi and Alabama is the erosional subcrop of the Lower Cretaceous. 
The eastern boundary in Florida is defined by the limit of clastic deposition according to well data. In Texas and Louisiana, a line offset 10 
miles downdip of the Lower Cretaceous shelf margin defines the downdip limit of the AU (off-shelf Lower Cretaceous basinal carbonates 
were separately assessed). Where the Lower Cretaceous shelf margin extends offshore from Mississippi, Alabama,  and the panhandle of 
Florida, the AU boundary is the State waters boundary. 
 
Elements of the Unconventional Petroleum System 

 
As part of the USGS assessment methodology, a TPS is divided into assessment units, mappable rock units based on similar geologic 
characteristics within the TPS (Klett et al., 2003). This provides a framework for estimating volumes of hydrocarbons that may be 
discovered over the forecast period of the assessment. The forecast period used by the USGS for estimating volumes of undiscovered 
hydrocarbon accumulations currently is 30 years and assumes minimum accumulation sizes, resource quality, and ease of access relevant to 
current and future technologies and economic conditions (Schmoker and Klett, 2005). 
 
Data Sources  

 
Two proprietary, commercially available databases currently are used in USGS resource assessments. One database (Nehring Associates, 
Inc., 2009) contains reserves, cumulative production, and other types of information for most oil and gas fields of the United States that are 
larger than 0.5 million barrels of oil equivalent. The data used in the 2010 assessment were current as of December 31, 2007. The second 
database (IHS Energy Group, 2010) contains drilling, well completion, and hydrocarbon production data (current through March, 2010). 
Publicly available State oil and gas databases also were checked to confirm information on individual wells contained in the IHS database 
(IHS Energy Group, 2010). 
 
Continuous or Unconventional Petroleum Accumulations 

 
The following provides current USGS definitions of continuous hydrocarbon accumulations in general and a brief description of their 
characteristics (Schmoker, 2005). Continuous hydrocarbon accumulations have large spatial dimensions, indistinct boundaries, and do not 
collect on the surface of associated water (Figure 4). These accumulations consist of large volumes of low-permeability rock including 
sandstone, shale, chalk, or coal which are pervaded with adsorbed oil or gas. These accumulations can lack traps and seals, their hydrocarbon 
producibility may depend on fracture permeability, and if not self-sourcing, they typically are closely associated with source rocks. Shallow 
biogenic gas accumulations, coalbed methane, gas hydrates, and oil and gas hosted in shale and low-porosity limestone and sandstones are 
examples of continuous hydrocarbon accumulations.  



  

 
Common production characteristics of continuous hydrocarbon accumulations include large in-place hydrocarbon volumes, low-recovery 
factors, absence of truly dry holes, production characteristics that depend on fracture permeability, and “sweet spots" with generally better 
production. 
 
 

      
 
Figure 1. Map showing the Greater Gulf Basin Lower Cretaceous Shale Gas AU boundaries and the Upper Jurassic-Cretaceous-Tertiary 
Composite Total Petroleum System boundary for the U.S. Gulf Coast region (Dubiel et al., 2007). Lower Cretaceous shelf margin from 
Galloway et al. (2000). 



                                                         
 
Figure 2. Generalized Mesozoic stratigraphy of the Gulf Coast region showing oil and gas production and source rocks. The stratigraphic 
interval included within the Lower Cretaceous Shale Gas AU is highlighted in yellow (conventional accumulations and unconventional 
Maverick Basin Pearsall Formation shale gas excluded). Modified from Dubiel et al. (2010). 



 
 
Figure 3. Stratigraphic chart of the northern Gulf of Mexico onshore region showing distribution and dominant lithology of formations in the 
Greater Gulf Basin Lower Cretaceous Shale Gas AU. Modified from Ambrose et al. (2009); American Association of Petroleum Geologists 
(2002); Anderson (1980); Anderson (1989); Chenault and Lambert (2005); Mancini et al. (2008); Salvador (1991); Salvador and Quezada-
Muñeton (1991); Zahm et al. (1995). 



 
 
Figure 4. Characteristics of conventional and continuous hydrocarbon accumulations. Continuous or unconventional accumulations lack 
water contacts and conventional traps (from Schmoker, 2005). 



  

Regional Geologic and Structural Setting 

 

General Gulf of Mexico Basin Structure 

 
The Gulf of Mexico Basin is a small ocean basin created by Mesozoic sea-floor spreading and crustal extension (Galloway, 2008). 
Northwest-southeast-trending transfer faults related to Mesozoic rifting most likely influenced depositional patterns throughout the history of 
the Gulf of Mexico Basin (Stephens, 2009). The Cretaceous continental shelf margin developed on a hinge zone between thicker and thinner 
crust where an extensive reef system developed (Galloway, 2008) (Figure 5). The uplifts, arches, embayments, and salt basins around the 
northern edge of the basin are the result of differential subsidence between the thicker and thinner crust, Late Cretaceous volcanism, and the 
movement of salt in combination with pre-existing structures that are possibly as old as Precambrian (Galloway, 2008; Culotta et al., 1992). 
 

Gulf Coast Paleohighs 

 
In the central and eastern Gulf Coast onshore region, major basement paleohighs that influenced distribution and thickness of Mesozoic 
deposits include the Sabine Uplift, Monroe Uplift, Jackson Dome, Wiggins Arch, Choctaw Ridge, and Conecuh Ridge (Mancini et al., 2008) 
(Figure 5). Of these paleohigh features, the Sabine Uplift was a structural low during the Early Cretaceous and uplifted during the Late 
Cretaceous to Eocene (Laubach and Jackson, 1990). The Jackson Dome and Monroe Uplift are cored by volcanic rocks of Cenomanian age, 
65-80 Ma, but there is a suggestion of doming during the Paleozoic (Ewing, 2009). The rest of the paleohighs were present during the 
Paleozoic (Halbouty, 1966; Cagle and Khan, 1983; Lawless and Hart, 1990; Mink and Mancini, 1995; Li, 2006; Ewing, 2009). 
 
Major Gulf Coast Depositional Centers 

 
Cretaceous sediments surround the Gulf of Mexico basin, thicken basinward, and pinch-out on the updip edges of the basin (McFarlan and 
Menes, 1991). This pattern of deposition is modified by basins and embayments of the Gulf Coast onshore region, many of which are due to 
salt withdrawal that formed depositional centers relative to the adjacent paleohighs (Figure 5). A major embayment of the Gulf of Mexico, 
the East Texas Basin, is bounded on the northeast by the Sabine Arch and was separated from the Gulf of Mexico by the Angelina-Caldwell 
Flexure during the Late Cretaceous and Paleogene (Ambrose et al., 2009; Stehli et al., 1972). In the deep central part of the East Texas 
Basin, syn-depositional salt movement created accommodation space that outpaced uplift associated with the Sabine Arch and changes in 
sea level (Salvador 1991; Ambrose et al., 2009). The Maverick Basin in southern Texas and northern Mexico formed slowly due to regional 
subsidence during the middle Albian (Chenault and Lambert, 2005; Hentz and Ruppel, 2010). 
 
The North Louisiana Salt Basin, the Mississippi Interior Salt Basin, and the Manila and Conecuh sub-basins were extensional basins 
modified by movement of the Jurassic Louann Salt during the Late Jurassic and Early Cretaceous (Mancini et al., 2008). The Apalachicola 
Embayment overlies an extension of the South Georgia Basin, is related to Triassic-Jurassic rifting, and contains more than 6000 feet of 
Cretaceous clastic sediments (Ewing and Lopez, 1991). 
 



  

Cretaceous Shelf Edge 

 
During the early part of the Cretaceous an almost continuous rimmed carbonate shelf formed that extended from the Bahamas and Florida 
westward to Texas and southward into northwestern Mexico (Scott, 2010) (Figure 5). The margin of the shelf was established along a 
subsidence hinge on the boundary between thicker crust to the north and thinner crust basinward (Galloway, 2008). Landward of the shelf 
edge, a shallow carbonate depositional regime dominated on a broad, relatively flat platform with reefs and banks at the margin, and 
accumulation of dark argillaceous carbonates in the deeper forereef (Fisher and Rodda, 1969; Bebout, 1974; Yurewicz et al., 1993). In south 
and central Texas, shelf-margin development reduced the amount of wave energy reaching the inner shelf platform and changed the 
depositional regime from high-energy tidal complexes to lower energy, mud-dominated complexes with extensive evaporite beds (Phelps et 
al., 2010). Differential tectonic uplift of the basin margin during the mid-Cenomanian, plus tilting and subsidence of the shelf margin and 
outer shelf, resulted in drowning of the shelf and development of the mid-Cenomanian unconformity at the top of the Washita Group 
(Galloway, 2008).  
 

Faults 

 
Surrounding the northern Gulf of Mexico Basin there are systems of peripheral grabens that generally parallel the Cretaceous shelf margin 
and which are related to: 1) regional tectonic movements associated with the Ouachita and Appalachian orogenic belts, 2) regional 
downwarping of the Gulf Coast Basin due to Tertiary sediment loading, and 3) movement of the Jurassic Louann Salt. Major peripheral 
graben systems related to the AU are shown in Figure 5 and are, from west to east, the Charlotte-Jourdanton, Balcones, Luling, Karnes, 
Milano, Mexia, Talco, Pickens, Gilbertown, and Pollard fault zones (Murray, 1957; Mancini et al., 1986; Ewing and Lopez, 1991). The 
Angelina-Caldwell Flexure in eastern Texas and southern Louisiana resulted from Tertiary sediment loading in the area of the Sabine Uplift 
(Ewing and Lopez, 1991). Other more localized fault systems are related to salt domes and salt movement in the East Texas Basin and the 
Louisiana and Mississippi salt basins. 
 
Depositional Models  

 
The Greater Gulf Basin Lower Cretaceous Shale Gas AU consists of Lower Cretaceous Aptian and Albian formations and lower 
Cenomanian formations of the Comanchean Series, starting with the Aptian Sligo Formation at the base of the series and terminated upwards 
by the regional mid-Cenomanian unconformity recognized at the top of the Washita Group (Figures 2 and 3). During the Albian and Aptian, 
distinct depositional cycles comprised of carbonate shelf (Figure 6A) and clastic material (Figure 6B) were separated by maximum flooding 
surfaces and disconformities. The cycles are represented by the following major lithostratigraphic units: the Sligo Formation, and the Trinity, 
Fredericksburg, and Washita groups (Galloway, 2008; Scott, 2010) (Figures 2 and 3). Ages of these rocks have been correlated by 
biostratigraphy to global cycles of marine transgression and regression (Mancini and Puckett, 2002) and to local subsidence and tectonic 
uplift during the Laramide orogeny (Galloway, 2008). Although the Lower Cretaceous in the Texas Gulf of Mexico coastal plain is 
dominated by carbonate units (Figure 7), clastics are more prevalent to the north and east in updip areas of Louisiana, Mississippi, Alabama,



  

and northern Florida (Figure 8) because of proximity to terrigenous source terranes (Rainwater, 1971; Raymond, 1995; Mancini et 
al., 2008). 
 
 

 
 
Figure 5. Structure map of northern Gulf of Mexico Basin region showing basins, uplifts and other structural features in the Gulf Coast 
region that influenced deposition. Modified from Ewing and Lopez (1991) and Li (2006). 



                                                   
 
Figure 6. Cretaceous depositional regimes of the Gulf of Mexico region: A) marine, carbonate-dominated environment, and B) siliciclastic, 
fluvial-deltaic environment (from Galloway, 2008). 



                                          
 
Figure 7. Depositional model for the western Gulf Coast region during the Cretaceous, showing dominance of carbonate sediments (from 
Kerans and Loucks, 2002). 



                    
 
Figure 8. Depositional model for the eastern Gulf Coast region during the Cretaceous and early Cenomanian, showing dominance of clastic 
sediments (from Mancini and Puckett, 2002; Yurewicz et al., 1993). 



  

Stratigraphy 

 

Sligo Formation 

 
The lower Aptian Sligo Formation is an argillaceous and fossiliferous aggrading and prograding limestone formation that is recognized in 
the subsurface from Texas to Florida (McFarlan and Menes, 1991; Mancini and Puckett, 2002). The Sligo Formation interfingers with 
terrigenous clastic sediments of the underlying Hosston Formation and becomes oolitic in east Texas and western Louisiana where it is 
known as the Pettet Limestone (McFarlan and Menes, 1991). The Sligo is not recognized in Mississippi (Raymond, 1995). Conventional 
hydrocarbon accumulations in the Hosston (Dyman and Condon, 2006) and Sligo and Pettet formations were assessed separately (Dubiel et 
al., 2010, 2011; Doolan and Karlsen, 2011; Karlsen and Hackley, 2011) from the unconventional AU described herein.  
 

Trinity Group 

 
The Trinity Group has two major divisions, the Pearsall Formation and the Glen Rose Formation. These formations and their equivalents are 
recognized throughout the study area, from south Texas to the western Florida panhandle (Figure 3). 
 

Pearsall Formation 

 
The predominantly terrigenous clastic Pearsall Formation overlies Sligo carbonates from south Texas to northern Florida (McFarlan and 
Menes, 1991). The lowest unit of the Pearsall, the Pine Island Shale, contains dark shales interbedded with thin limestones and is overlain by 
dense limestones of the James Limestone and the upper unit of the Pearsall Formation, the Bexar Shale (McFarlan and Menes, 1991). 
Hackley (2012) separately assessed the Pearsall Formation in the Maverick Basin of south Texas for unconventional hydrocarbon 
accumulations; therefore, the Greater Gulf Basin Lower Cretaceous Shale Gas AU does not include the Pearsall Formation southwest of the 
San Marcos Arch (Figure 5). 
 

Glen Rose Formation  

 
In the carbonate shelf areas of the study area, Aptian-Albian Glen Rose limestones transgressed over the Pearsall Formation (McFarlan and 
Menes, 1991; Mancini and Puckett, 2002). The Glen Rose Formation is recognized as a single discrete unit in south Texas composed of 
argillaceous dolomite with anhydrite layers (Rose, 1972). Northward and eastward into east Texas and Alabama, the Glen Rose is 
subdivided into the Rodessa Formation, the Ferry Lake Anhydrite and the Mooringsport Formation, which is a predominantly argillaceous 
unit that commonly hosts conventional oil and gas accumulations (Baria, 1981; Raymond, 1995). Conventional oil and gas accumulations in 
the Glen Rose Formation and equivalent strata were assessed separately (Dubiel et al., 2010, 2011). 
 



  

 

Fredericksburg and Washita Groups 

 
Units of the Fredericksburg and Washita Groups are recognized and subdivided in most of Texas, but are not differentiated in the 
northeastern Gulf of Mexico Basin, with the exception of the clastic Paluxy and Dantzler Formations (Figure 3). Conventional hydrocarbon 
accumulations in the Fredericksburg and Washita groups were assessed separately (Dubiel et al., 2010, 2011) from the Greater Gulf Basin 
Lower Cretaceous Shale Gas AU described herein. 
 

Fredericksburg Group 

 
In updip areas of Texas, Louisiana, Mississippi, and Alabama, the top of the Glen Rose Formation interfingers with terrigenous clastics of 
the Paluxy Formation of the basal Fredericksburg Group, a time-transgressive unit representing a change from fluvial-deltaic clastic facies to 
purely marine limestone facies of the Edwards and equivalent Goodland Formations (Anderson, 1989). In south and central Texas, the 
Fredericksburg Group includes the Edwards Limestone, composed of transgressive West Nueces limestones and overlying McKnight 
evaporites to the south, and the Kainer massive dolomitic micrites and the Person biomicrites and rudist grainstones to the north (Rose, 
1972; McFarlan and Menes, 1991). From east Texas to west-central Mississippi, the Fredericksburg Group is divided in ascending order into 
the Paluxy, Goodland, and Kiamichi Formations (McFarlan and Menes, 1991) (Figure 3). 
 

Washita Group 

 
The Washita Group overlies the Fredericksburg Group, unconformably in many places (Anderson, 1989). Washita deposition began with the 
Kiamichi Formation, a regional shale unit described as distal turbidite (Scott et al., 1975). Overlying the Kiamichi is the Georgetown 
Formation and its equivalents: the Duck Creek Limestone, Fort Worth Formation, Denton Clay, Pawpaw Formation, Weno Limestone, and 
Main Street Formation of late Albian age, the lower Cenomanian Del Rio and equivalent Grayson formations, and the Buda Formation 
(McFarlane and Menes, 1991). In the East Texas Basin, the Buda Formation is conformably overlain by the Maness Shale (Ambrose et al., 
2009). Elsewhere in Texas, the top of the Buda Formation is considered to be a submarine discontinuity (Mancini and Scott, 2006). The 
clastic Dantzler Formation is the Buda equivalent at the top of the Washita Group in the central and eastern Gulf of Mexico region (Mancini 
et al., 2008) (Figure 3). 
 
Cretaceous Reef Trend Formations 

 
The downdip part of the Greater Gulf Basin Lower Cretaceous Shale Gas AU contains the Sligo, Glen Rose, and Edwards reefs at the 
Cretaceous shelf edge earlier described. The carbonate-margin trend was summarized by Winker and Buffler (1988) and is briefly reviewed 
here. Reef facies of the Sligo Formation developed on the shelf margin during the Aptian in Texas and may have continued into the Albian 
in eastern Texas. Reef facies of the Edwards Formation, also known as the Stuart City trend in Texas, developed slightly landward of the 



  

Sligo margin in Texas and are nearly continuous around the present onshore northern Gulf Coast area before extending seaward as the 
Florida Escarpment (Figure 5) (Fritz et al., 2000).  
 
Reef margins in the Greater Gulf Basin Lower Cretaceous Shale Gas AU are composed of transgressive and regressive cycles of framework 
limestone deposition that interfinger with the landward facies of the Sligo Formation, and the Trinity, Washita and Fredericksburg Groups 
(McFarlan and Menes, 1991). In central Texas, eight composite sequences containing nearly 50 high-frequency cycles of low- to high-
energy regimes, punctuated by mud-dominated to grainstone-dominated cycles, were documented, starting with the Sligo Formation and 
continuing to the Upper Cretaceous (Phelps et al., 2010). 
 
Mid-Cenomanian Unconformity 

 

The top of the Greater Gulf Basin Lower Cretaceous Shale Gas AU is set at the mid-Cenomanian unconformity. Depositional patterns in the 
northern Gulf of Mexico Basin were interrupted in the mid-Cenomanian, during a period of global sea level fall and uplift from local igneous 
activity, resulting in this region-wide unconformity. Maximum erosion of Lower Cretaceous units occurred in the north-central Gulf coastal 
area (Li, 2006; Galloway, 2008). Both the Maness Formation in east Texas and the Dantzler Formation red beds in west-central Mississippi 
and southern Alabama represent local deposition in areas not affected by the mid-Cenomanian unconformity (McFarlan and Menes, 1991). 
 
Extent, Thickness, Lithology and Depth of Shales in AU 

 
The Sligo Formation primarily is carbonate in east Texas, Louisiana, and Arkansas and becomes more clastic-rich in Mississippi and 
eastward (Mitchell-Tapping, 1981). Shallow-marine Sligo Formation shales in Mississippi are dark-red to grey and interbedded with gray to 
white, fine-grained sandstone from shoreface and marine-shelf environments (Devery, 1982; Mancini and Puckett, 2002). Individual “shale” 
beds in the Sligo Formation generally are thin, on the order of 10s of ft (e.g., Mancini and Puckett, 2002; Enomoto et al., 2012).  
 
Total shale thickness in the Trinity Group is up to 1500 feet, but unnamed dark gray to black shales occur only in a thin band of 
approximately 500 ft thickness in Texas and western Louisiana (Figure 9) (Forgotson, 1956). Regionally extensive shaly units of the Trinity 
Group include the Pine Island Shale and Bexar Shale of the Pearsall Formation, and the Mooringsport Formation (Forgotson, 1956; Kimmel, 
1957; Rainwater, 1971; Scott et al., 1975; Young, 1986; Raymond, 1995; Mancini et al., 2008; Enomoto et al., 2012). The Pearsall 
Formation is thicker in east Texas, Louisiana, Arkansas, and Mississippi, where it is up to 800 ft; in Alabama and Florida, the Pearsall thins 
to a maximum of about 300 ft (Enomoto et al., 2012). Regional studies by Forgotson (1957, 1963) indicated Pearsall Formation shale 
thickness at a maximum of about 400 ft in southern Alabama and thinner elsewhere in the northern Gulf of Mexico Basin. In general, the 
regional studies by Forgotson (1957, 1963) and Enomoto et al. (2012) indicated Pearsall shales are dark gray to black in downdip areas, 
green and brown in updip areas in the western and central parts of the basin, and red in updip areas in the eastern part of the basin (Figure 
10).  
 



  

The Mooringsport Formation is recognized from east Texas to the western panhandle of Florida (Figure 11) and is up to 300 feet thick in 
southern Alabama (Raymond, 1995). Some thin Trinity Group shales also are present in the Glen Rose Formation and its equivalents in the 
eastern part of the study area (Devery, 1982; Warner and Moody, 1992).  
 
The Kiamichi Formation is widespread and mapped at outcrop from Arkansas and Oklahoma southwestward into the Permian Basin of 
southwestern Texas as well as southeastward into west-central Mississippi, where it is described as dark calcareous clay with thin limestone 
interbeds (Nunnally and Fowler, 1954). Various workers have proposed placing the Kiamichi as either the uppermost formation in the 
Fredericksburg Group or lowermost formation in the Washita Group; currently, the USGS assigns the Kiamichi to the Fredericksburg 
(USGS, 2011). At outcrop, the Kiamichi Shale varies in thickness from 10-150 ft (Hill, 1891; Wilmarth, 1938; Leggat, 1957; Shelburne, 
1959; Perkins, 1960; Fox and Hopkins, 1960; Freeman, 1964; Barnes, 1967a,b, 1972; Brown, 1971). In McMullen County, Texas, the 
Kiamichi Formation is described as 400 ft thick, with alternating beds of black brittle shale, sandstone, and calcareous marls with beds of 
marine megafossils, such as oysters (Kimmel, 1957). In the Blackfoot field in the western part of the East Texas Basin the Kiamichi 
Formation is 90 ft thick (Branson, 1950). 
 
In the Washita Group there are numerous thin units described as containing shale, for example: the Duck Creek Limestone, Denton Clay, 
Pawpaw Formation, Weno Limestone, and the Maness Shale (Figure 3). Lithofacies include fossiliferous black shales, thin calcareous 
shales, marls, sandy clays, and sand lenses (Hill, 1891, 1901; Wilmarth, 1938; Smith, 1940; Lozo, 1943; Leggat, 1957; Shelburne, 1959; Fox 
and Hopkins, 1960; Freeman, 1964; Barnes, 1967a,b, 1972; Rainwater, 1971; Scott et al., 1975; Mancini, 1977; Mancini, 1982). These units 
are limited to the Texas part of the Greater Gulf Basin Lower Cretaceous Shale Gas AU. The Duck Creek Limestone, Denton Clay, Pawpaw 
Formation and Weno Limestone each have thicknesses ranging from 3-50 feet (Cuyler, 1929, Brown, 1971). The Maness Shale is up to 50 
feet thick in the East Texas Basin (Ambrose et al., 2009). The Del Rio Formation and equivalent Grayson Shale of the Washita Group are 
more regionally extensive and recognized from the Maverick Basin eastward to central Louisiana (Mancini et al., 2008) (Figure 3). The Del 
Rio/Grayson is 80-100 ft thick throughout most of Texas with thicknesses in proximity to the Stuart City reef varying from 50-170 ft and a 
maximum thickness of 265 ft in the Maverick Basin (Brown, 1971; Mancini, 1977, 1982).  
 
Formation-tops data from IHS Energy Group (2010) were used to construct a depth-below-surface map (Figure 12) for the upper 
stratigraphic limit (the mid-Cenomanian unconformity) of the Greater Gulf Basin Lower Cretaceous Shale Gas AU. The depth below surface 
map reflects the overall basinward dip of Gulf stratigraphic units and clearly reflects the presence of the major structural features of the 
basin. The deepest parts of the AU upper stratigraphic limit are along the Cretaceous shelf edge where depth below surface is up to 25,000 ft. 
 
 



        
 
Figure 9. Isopach map of Trinity Group shales, showing dominant shale color by area (from Forgotson, 1956). 



 
 
Figure 10. Shale isolith and shale color map of the Pearsall Formation across the northern Gulf of Mexico Basin (from Forgotson, 1963). 
Location of Lower Cretaceous shelf edge is from Galloway et al. (2000). See Forgotson (1960) for explanation of entropy function 
lithofacies maps as symbolized in the ternary shale color diagram. 
 



                             
 
Figure 11. Isopach map of Mooringsport Formation in southern Alabama (from Raymond, 1995). 



 
 
Figure 12. Depth-below-surface map to the top of the Greater Gulf Basin Lower Cretaceous Shale Gas AU, constructed from formation-tops 
data for the Buda Limestone, Maness Shale, and equivalents (data from IHS Energy Group, 2010). 



  

 

 

Thermal Maturity and Organic Geochemistry 

 
Geochemical data available from lithologies in the Greater Gulf Basin Lower Cretaceous Shale Gas AU at the time of this assessment are 
compiled in Table 1 and spatially located in Figure 13. In general, for a shale to be considered favorable for gas production, it should contain 
total organic carbon (TOC) content > 2.0 wt.% and vitrinite reflectance (Ro) values > 1.0% (e.g., Wang and Gale, 2009), although each shale 
play is different. Only one sample in the collection meets the first criterion, the Del Rio Shale sample from Bastrop County, Texas, 
containing TOC content of 4.63 wt.%, but low calculated Ro value of 0.6%. According to Peters (1986), Tmax is a crude indicator of thermal 
maturity, with oil generation indicated by Tmax of about 435°C. The Del Rio Shale sample has a Tmax value of 431°C, suggesting that it has 
not yet reached conditions where oil generation would start (Peters, 1986; Peters and Cassa, 1994). Other samples with Ro values >1.0% do 
not meet other criteria; for example, the Sligo Formation sample from Natchitoches Parish, Louisiana, with Ro of 1.37%, has a TOC content 
of only 0.23 wt.%. However, consideration of shale-gas prospectivity as a function of thermal maturity also should consider kerogen type, as 
Type III kerogen (terrestrial organic matter) can begin to generate gas at Ro as low as 0.5% (Tang et al., 1996). A cross plot of S2, another 
indicator of hydrocarbon generating capacity, with TOC content (Peters and Cassa, 1994; Edman and Pitman, 2010) indicates the current 
group of samples from shales in the AU are not good source-rock candidates, with the exception of the one Del Rio Shale sample (Figure 
14). Enomoto et al. (2012) presented Rock-Eval and Ro information for about thirty samples from the Pearsall Formation and upper Sligo 
Formation from the San Marcos Arch eastward. In general, their data also indicated poor regional prospectivity for shale gas considering the 
criteria of Wang and Gale (2009), with Ro values mostly <1.0 % and TOC averaging around 0.5 wt.%. However, to make reliable 
interpretations of shale-gas prospectivity, larger quantities of thermal maturity and organic geochemistry data are needed to augment and 
refine the reconnaissance-scale regional studies that currently are available. 
 
USGS thermal maturity modelling (Dubiel et al., 2012) of the Eagle Ford Shale, which overlies the Greater Gulf Basin Lower Cretaceous 
Shale Gas AU, indicated that the Eagle Ford becomes mature for hydrocarbon generation several tens of miles updip from the Lower 
Cretaceous shelf margin, except in the Maverick Basin and Houston Embayment where it becomes mature significantly updip of the shelf 
edge (Figure 15). Considering the modelling data of Dubiel et al. (2012) and taking into account the increased depth to the Lower 
Cretaceous, as well as consideration of the Ro data from Enomoto et al. (2012), a hypothetical Ro boundary for the gas generation threshold 
(Ro >1.2%) at the top of the Greater Gulf Basin Lower Cretaceous Shale Gas AU is shown in Figure 15. This estimate of thermal maturity 
likely indicates that most of the area of the Greater Gulf Basin Lower Cretaceous Shale Gas AU is immature for self-sourced gas with the 
exception of very close proximity to the Cretaceous shelf edge. 
 
 

 



 
 
 
 

 
 
Table 1. Rock-Eval and vitrinite reflectance data available for lithologies in the Greater Gulf Basin Lower Cretaceous Shale Gas AU. 



         
 
Figure 13. Map showing location of samples from which geochemical data are available. 



                                                         
 
Figure 14. Cross plot of S2 (milligrams hydrocarbons/gram of rock) versus wt.% total organic carbon content and favorable values for 
potential source rocks (modified from Peters and Cassa, 1994; Edman and Pitman, 2010). 



        
 
Figure 15. Hypothetical boundary for Ro >1.2% in the Greater Gulf Basin Lower Cretaceous Shale Gas AU, using modelling data from the 
overlying Eagle Ford Shale (Dubiel et al., 2012). Placement of the Ro >1.2% boundary also considers Ro data from Enomoto et al. (2012). 



  

Overview of Exploration and Production History 

 
At the time of the 2010 assessment there were no continuous gas production data available for any of the formations in the Greater Gulf 
Basin Lower Cretaceous Shale Gas AU. However, conventional reservoirs have been productive from the Sligo Formation, and Trinity, 
Fredericksburg, and Washita groups since the early days of Gulf hydrocarbon exploration (Nehring Associates, 2009). For example, 
conventional Sligo Formation clastic reservoirs have produced oil and gas in the Mississippi Interior Salt Basin since the 1920s, and 
conventional Sligo carbonate reservoirs are present throughout the East Texas Basin and eastward into northern Louisiana and southern 
Arkansas (Nehring Associates, 2009). Oil and gas have been producing from the James Limestone of the Pearsall Formation in the East 
Texas Basin, northern Louisiana, and from deep reservoirs in southern Mississippi. Conventional production from interbedded transgressive 
shoreface sands in the Pine Island Shale includes the West Raymond Field in Hinds County, Mississippi (Warner and Moody, 1992), some 
production in Florida (Applegate and Lloyd, 1985), and production from the Hogg Sand Member in southern Arkansas (Clanton, 1967). 
Undiscovered conventional hydrocarbon resources from these and other units in the Lower Cretaceous were separately assessed (Dubiel et 
al., 2010, 2011). At the time of the 2010 assessment, there was no indication of the presence of biogenic gas in the Greater Gulf Basin Lower 
Cretaceous Shale Gas AU.  
 

Summary and Suggestions for Future Work 
 
As part of a 2010 assessment of undiscovered hydrocarbon resources in the onshore northern Gulf of Mexico Mesozoic section, the USGS 
defined but did not quantitatively assess a Greater Gulf Basin Lower Cretaceous Shale Gas AU. The AU was defined because of the 
potential for future continuous “shale” gas production in the Lower Cretaceous section, but was not assessed due to the lack of current 
hydrocarbon production and the absence of lithologic data necessary for a quantitative assessment. To provide a quantitative assessment of 
the potential volumes of recoverable hydrocarbons from continuous shale reservoirs, the following information is needed: 1) extent of 
reservoir; 2) thickness and lithology of reservoir rocks, 3) total organic carbon content of the potential reservoir rocks, 4) depth of the 
reservoir, 5) thermal maturity of the reservoir rocks, 6) well production data and indication of gas shows, 7) pressure data, and 8) estimated 
ultimate recoveries per well (Charpentier and Cook, 2010). Accurate prediction of undiscovered continuous hydrocarbon resources in the 
Greater Gulf Basin Lower Cretaceous Shale Gas AU will require these data sets to be developed and refined through future research efforts 
and through industry exploration and production. Ongoing research on continuous resources within the stratigraphic limits of the Greater 
Gulf Basin Lower Cretaceous Shale Gas AU includes investigation of the organic geochemistry and thermal maturity of the Pearsall 
Formation in the central and eastern Gulf Coast area (Enomoto et al., 2012). The preliminary work of Enomoto et al. (2012) has suggested 
poor regional prospectivity for shale gas in the Pearsall due to low thermal maturity and low TOC content. However, their work has also 
suggested potential focus areas for further research, including the deep downdip Pearsall section in the southern Mississippi Interior Salt 
Basin. Other prospective units that should be investigated in the Greater Gulf Basin Lower Cretaceous Shale Gas AU include the 
McKnight/Kiamichi Shale and Del Rio Shale in the Maverick Basin where shale units are thicker and thermal maturity is higher. In future 
work, horizontal drilling, hydraulic fracturing activities and production information from wells confirmed to be producing from “shale” units 
in the AU should be compiled and monitored. The reservoir character of “shale” units in higher thermal maturity zones close to the 



  

Cretaceous shelf edge also should be investigated. Finally, thermal maturity and organic-richness data are needed from throughout the spatial 
extent of the AU to determine the viability of “shale” units for commercial production.  
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