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Abstract 

 
The South Viking Graben (SVG), northern North Sea, hosts many large hydrocarbon accumulations. In the Norwegian sector, the main 
reservoir-trap pairs are: (i) Middle Jurassic shallow marine sandstones in structural traps, and (ii) Palaeocene Deepwater sandstones in 
structural or combination traps. Upper Jurassic, syn-rift turbidite sandstones form reservoirs in several fields in the UK sector, but the 
equivalent succession in the Norwegian sector remains relatively unexplored due to difficulties in predicting reservoir distribution and 
trapping configurations. These difficulties reflect the control that rift-related normal faults and salt movement has on the deposition of 
Deepwater reservoir sandstones. In this study we use potential field, 3D seismic and well data to investigate how normal fault growth and 
movement of the evaporite-dominated Zechstein Supergroup control spatial variations in syn-rift structural style, trapping styles and 
reservoir distribution in the SVG. In the north of the basin, syn-rift deformation is dominated by listric faults that detach downwards into the 
underlying evaporites. These faults formed in response to tilting of the hangingwall and break-up of the supra-salt units, and halokinesis in 
this area is restricted to low-relief salt rollers in the immediate footwalls of the listric faults. In the central part of the basin, rift-related 
normal faults are basement-involved and only rarely propagated up through the Zechstein Supergroup. In this location fault-propagation 
folds, which are cored by low-relief salt pillows, developed in the supra-salt cover strata. The southern part of the basin is dominated by a 
series of ‘minibasins’ developed in response to the collapse of older Triassic-age salt diapirs; normal faulting is rare, and limited to low-
displacement structures overlying the crests of salt diapirs and a few basement-involved faults that breach the Zechstein Supergroup. This 
study demonstrates that the Late Jurassic, syn-rift structural evolution of the SVG varied markedly over relatively short (i.e. <20 km) length-
scales. We interpret this variability is related to mobile halite distribution within the Zechstein Supergroup; ‘halite-poor’ parts of the basin 
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are characterized by supra-salt, gravity-driven faults, whereas minibasins formed in ‘halite-rich’ parts of the basin. We conclude by 
demonstrating how these variations in structural style control the distribution and geometry of syn-rift reservoirs. 



2. Study Area

1. Rationale
Deep-water sands within the Upper Jurassic syn-rift succession 
form the reservoir for several hydrocarbon fields in the UK sector of 
the South Viking Graben but the equivalent succession in the 
Norwegian sector remains relatively unexplored (Fig. 1a). 

The prediction of syn-rift reservoir distribution requires an 
understanding of: (1) the control of salt lithology and thickness on 
normal faulting and folding; (2) the impact of halokinesis and 
salt-influenced rifting on trap development; and (3) the influence 
of faulting and halokinesis on syn-rift sediment dispersal during 
(Fig. 1b).
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3. Thickness and lithology of the Zechstein Supergroup

4. Case Study 1: Minibasins on the SW margin of the Utsira High
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5. Case Study 2: Salt-influenced fault-related folding in the Sleipner Basin

Seismic isochron mapping (Fig. 5d & 5e) provide insights into 
the temporal and spatial development of the SFZ and the 
Sleipner Graben and these allow proposal of a 
tectono-stratigraphic model (Fig. 5f).

The Sleipner Basin is bound to the east by a segmented 
extensional fault (Sleipner Fault Zone - SFZ) and to the west 
by a large salt-cored high (Fig. 5a & 5b). 

Fault-Perpendicular Folds - Three 
fault-perpendicular, salt-cored anticlines or 
intra-basin highs (IBH) compartmentalise the basin 
into four sub-basins (X-X’ in Fig. 5a & 5b). These 
intra-basin highs are located adjacent to areas of fault 
segment overlap.

Fault-Parallel Fold - A fault-parallel monocline 
underlain by thickened salt is identified in the 
immediate hangingwall of the SFZ (W-W’ in Fig. 5a & 
5b). This structure is interpreted as a fault-propagation 
fold (extensional forced fold) which formed through the 
inhibited growth of the Sleipner Fault within the ductile 
Zechstein Group (Fig. 5a & 5b).

Fault and salt-related fold structures are identified in the basin:
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6. Case Study 3: Thin-skinned gravity-driven extension in the Gudrun area

SU1b: Middle Syn-Rift (Fig. 5e)SU1a: Early Syn-Rift (Fig. 5d) SU2: Late Syn-Rift (Fig. 5f)
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The Gudrun Fault is 17 km long, planar in cross-section and dips steeply 
to the NW. The fault tips out downwards into the ZSG and upwards into 
the lower part of the Draupne Fm (SU2) (Fig. 5a & 5b).

Biostratigraphically-constrained stratigraphic correlations (Fig. 5c) and 
seismic isochron mapping (Fig. 5d-f) document the temporal and spatial 
evolution of the Gudrun fault array (Fig. 5gi-iii).

In the Gudrun area the ZSG formed a detachment for a thin-skinned fault 
array that developed due to progressive westward hangingwall tilting 
towards the GBFZ (Fig. 5a & 5b)

The Brynhild Fault occurs 5 km to the NE (i.e. up the hangingwall dipslope) 
of the Gudrun Fault. It is 15 km long and is divided into a southern (BFS) and 
northern (BFN) segment. Both are listric in geometry, detaching at a 
shallow angle into the Zechstein Gp and tipping out steeply upwards into 
SU2. A rollover anticline is developed in its hangingwall (Fig. 5a & 5b).
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Where salt is relatively thick and halite-rich, a minibasins 
may develop.

Interaction between extensional faulting and salt mobility 
causes fault-propagation folding and the development of 
fault-perpendicular folds.

Fault-propagation folding influences depocentre 
development for much of the rift phase; fault-perpendicular 
folds largely active during the early syn-rift.

In areas where salt is relatively thin and/or immobile, a 
gravity-driven, thin-skinned extensional faulting may 
develop in response to basement tilting.

Extensional fault activity may migrate in response to 
ongoing basement tilting and progressive ‘unbuttressing’ of 
the cover strata located further up the hangingwall dipslope.

The initial post-salt succession thickest in minibasins 
adjacent to diapirs; syn-rift succession thickest in the later 
minibasins that develop above collapsed diapirs.

Minibasin relief fills during the rift event; later depocentres 
more less localised than early depocentres.

It is critical to integrate seismic and well data to determine the tectono-stratigraphic evolution of salt-influenced rift basins.

Variations in structural style occur over relatively short length-scales (i.e. <10 km)
Spatial variations in structural style are broadly related to the thickness and/or mobility of the ZSG salt (see Section 3).

Reservoir distribution in salt-influenced rifts is more complex then that predicted by existing tectono-stratigraphic models (Fig. 7a).
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