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Abstract

The Marcellus Shale, a marine organic-rich shale deposited during Middle Devonian in the Appalachian Basin, is considered the
largest unconventional shale-gas resource in the United States. Two critical factors for shale-gas reservoirs are units amenable to
hydrologic fracture stimulation, and high free and adsorbed gas content. The effectiveness of hydrologic fracture stimulation is
influenced by rock geomechanical properties, which are related to rock mineralogy. The natural gas content in shale reservoirs has a
strong relationship with organic matter, which is measured by total organic carbon (TOC).

For this study in the Appalachian Basin, a 3D shale lithofacies model was constructed using mineral composition, rock geomechanical
properties and TOC content. This model could be applied to optimize the design of horizontal well trajectories and stimulation
strategies. Core analysis data, log data and seismic data were used to build a 3D shale lithofacies model from core scale to well scale
and finally to regional scale. Artificial neural network (ANN) was used for lithofacies prediction. Core XRD and chemical analysis
data, and wireline logs were utilized as inputs and target outputs to petrophysical analysis and various pattern recognition methods. A
limited set of eight derived parameters from common logs were determined as critical inputs. Advanced logs such as elemental capture
spectroscopy (ECS) with mineral composition and TOC data were used to improve and confirm the quantitative relationship between
common logs and lithofacies. Seismic data, and interpreted sequence stratigraphy and depositional environments were used as soft
data to constrain deterministic and stochastic 3D lithofacies models.
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Abstract Methodology

The Marcellus Shale, marine organic-rich shale deposited during Middle Devonian in the Appalachian basin, is considered the largest unconventional
shale-gas resource in US. Two critical factors for shale-gas reservoirs are units amenable to hydrologic fracture stimulation and high free and adsorbed
gas content. The effectiveness of hydrologic fracture stimulation is influenced by rock geomechanical properties, which are related to rock mineralogy. The
natural gas content in shale reservoirs has a strong relationship with organic matter, which is measured by total organic carbon (TOC). For a study are in
the Appalachian basin, a 3D shale lithofacies model is constructed using mineral composition, rock geomechanical properties and TOC content. This
model could be applied to optimize the design of horizontal well trajectories and stimulation strategies. Core analysis data, log data and seismic data were
used to build a 3D shale lithofacies model from core scale to well scale and finally to regional scale. Artificial neural network (ANN) was used for lithofacies
prediction. Core XRD and chemical analysis data and wireline logs were utilized as inputs and target outputs to petrophysical analysis and various pattern
recognition methods. A limited set of eight derived parameters from common logs were determined as critical inputs. Advanced logs such as pulsed
neutron spectroscopy (PNS) with mineral composition and TOC data were used to improve and confirm the quantitative relationship between common logs

and lithofacies. Seismic data, and interpreted sequence stratigraphy and depositional environments were used as soft data to constrain deterministic and
stochastic 3D lithofacies models.

The proposed methodology to build
3D shale lithofacies models by
integrating core XRD data, PNS logs
and conventional wireline logs and
seismic data. The mineral composition
and the richness of organic matters
are utilized to define Marcellus Shale
lithofacies. Core and PNS logs are the
basis of lithofacies research in core-
scale and consists of the training data
sets; the conventional logs and petro-
physical analysis are used to predict
shale lithofacies through quantitative
methods; 3D lithofacies are built by
predicted lithofacies and related data.

Geologic Background

The experience from Barnett black shale
indicates that the key for shale-gas
reservoir characterization is to figure out
units amenable to hydrologic fracture
stimulation and containing rich of organic
matters (Bowker, 2007). That is the
engineering and geologic sweet spot. A
shale lithofacies is a laterally and vertically
continuous zone that possesses similar
mineral composition and organic matters.
The shale lithofacies should be
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Marcellus Shale Lithofacies Features Petrophysical Analysis and Data Pre-processing for ANN

Cross-plots of gamma ray
versus neutron (a), density (b),
photo-electric (c) and deep
resistivity (d) for normalization.
There is obvious difference
between Group | and Group I
for neutron logs, which appear
to be related to wells drilled on|
either air or water, and a
scaling factor of 2.27 is

utilized to convert Group Il to
Group |. The other logs are
consistent enough and
unnecessary to be
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The gamma ray log showing
the thick shale unit above
Marcellus Shale (green line)
and the underlying
Onondaga Limestone (blue & s
line). The Onondaga o s
Limestone and the thick
shale are the reference
layers for GR log
normalization. The green line
shows the shale base line
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Eight recommended
parameters for
Marcellus Shale
lithofacies: uranium
concentration; Vsh
(or shale brittleness
index); RHOmaa;
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The estimated mineral core o
composition and TOC
content in PNS logs have

strong relationships with #

core XRD and TOC data
(Figure 9). The PNS logs

tend to underestimate the ; Pulsed Neutron Spectroscopy
percentage of quartz and 5 © 5 & 100
carbonate but overvalue 1

the clay content

compared to core XRD

data. The TOC content by

Rock-Eval pyrolysis tool

is approximate 1.8 times

higher than that by PNS

logs.
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The architecture of an artificial neural network (ANN) for
Marcellus Shale lithofacies prediction. (a) One single
ANN with seven output nodes for the one-versus-the-rest
method; (b) the modular ANN consisting of twenty-one
binary ANN classifiers with one output node for the

pairwise comparison method.
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The ERRE matrix for Marcellus
Shale lithofacies

ERREScore = ZZGCM — DM|.X ERRE)

The improved NEAT for shale
lithofacies prediction
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Statistical analyses of the conventional log series after normalization and
log analysis
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The chart used to weakening or removing the effect of pyrite and barite.
The pyrite effect lines are based on the fact that rock density and
volumetric measurement are the arithmetic average of all minerals and
kerogen weighted by their percentage (Doveton, 1994). Due to the
extremely high PE value and low concentration of barite, the occurrence of
barite has a negligible effect on rock density but strong effect on rock PE
value. The kerogen percentage, which can be approximately estimated
from GR or Uran, is necessary to differentiate the effect of barite and pyrite.

Shale Lif ies Similarity
Based on the Five Conventional Logs

Shale Li ies Similarity
Based on the Eight Derived Parameters
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The average distance between different Marcellus Shale lithofacies
calculated from the conventional logs directly (a) and the derived
parameters (b).




ANN Training and Results
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The figure above shows a real case of the decline curve of MSE optimized by the six supervised
learning algorithms. LM: fast; GA and PSO are refined by LM; validation is for avoiding over-
training. The table shows the cross-validation right ratio of different topology and learning
algorithms. The GA and PSO are more steady to optimize the ANN classifiers for different
topologies; the SCG and LM algorithms performs best in optimizing the ANN classifiers but less
steady; the SDG and SDGM algorithms are not recommended for shale lithofacies prediction.
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The confuse plot of the predicted seven shale lithofacies with ERRE (left) shows correctly
predicted lithofacies on the diagonal and miss-classified lithofacies in the off diagonal locations.
Adjacent facies are most similar. The cross plot in the left shows the effect of ERRE on cross-
validation right rate of the six learning algorithms. The table in the lower right indicates the ratio of

samples located above or below the reference line.

Cross-section of predicted Marcellus Shale lithofacies from
Ohio State to West Virginia with the probability of each
lithofacies.

An example of predicted shale lithofacies by single ANN based on core training dataset (3rd track)
and modular ANN based on pulsed neutron spectroscopy (PNS) log training dataset (4th track)
compared to PNS-defined lithofacies in Well #6 of Middle Devonian intervals, Appalachian basin.
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Structure modeling of the
Middle Devonian,
Appalachian basin: faults and
formation tops (left), grid
design (upper right) and
stratigraphy (lower right)

Marcellus Shale lithofacies geostatistic modeling
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Geostatistics of Marcellus Shale lithofacies:
vertical distribution (upper left), varigram
setting of organic siliceous shale (lower left),
and the varigrams of the other six lithofacies
(upper right). The blue ellipse shows the
ratio of major and minor rang and azimuth.
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Isopach maps of upper Marcellus (left),
Purcell (middle) and lower Marcellus (right).
The red dash line indicates the occurrence
of sandstone
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Marcellus Shale lithofacies geostatistic model by indicator kriging (upper left;
InKrig), truncated Gaussian simulation (upper right; TGS), and sequential
indicator simulation (lower; SIS) methods.
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Conclusions

Acknowledgements

« Marcellus Shale lithofacies is defined from core and PNS logs in
terms of mineral composition and organic matter richness; clay
percentage, the ratio of quartz and carbonate and TOC content are the
primary parameters.

< Petrophysical analysis, instead of conventional feature selection
method, is used to improve the input variable space for classifiers; eight
derived parameters from conventional logs are the input variables for
ANN; the effect of pyrite and barite was studies and partly removed.

« Artificial neural network is the major quantitative method to predict
Marcellus Shale lithofacies with conventional logs; scaled conjugate
gradient is the best learning algorithm for lithofacies prediction.

< 3D modeling was to better understand the distribution of Marcellus
Shale lithofacies in the Appalachian basin
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