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Abstract 
 
We present new results focused on the regional significance of the Jurassic basalt (“J” basalt) within the Late Triassic South Georgia 
Rift (SGR) basin and its potential as a seal for CO2 storage. The SGR basin which covers parts of Georgia, western Florida, southern 
Alabama and southern South Carolina, contains Triassic rocks that are deep enough to be classified as saline formations and are close 
to CO2 emission sources, making them promising for geologic CO2 sequestration. 
 
The objective of this work is to identify and interpret subsurface reservoirs and seals as part of a basin-scale geological assessment for 
potential CO2 storage. Contrary to the paradigm that the “J” basalt is present beneath the Cretaceous sediments in southeastern 
Georgia and parts of the (SGR) basin, our seismic imaging results corroborated by interpretation from nearby Georgia well data 
provide evidence to suggest that no pre-Cretaceous rocks are above the SGR in southeastern Georgia. 
 
This new seismic imaging involved reprocessing of 96-channel, 6s and 24 fold seismic reflection data (SEISData6) covering the 
Coastal Plain of southeastern Georgia. Reprocessing was enhanced by the use of residual statics in addition to the attempt to boost 
signal to eliminate the background noise. Of primary importance to our interpretation is the presence of a conspicuous, southeast-
dipping reflector with seismic characteristics similar to those previously described as the “J” reflector. However, our interpretation and 
subsequent correlation with a nearby Georgia well log indicates that this high-amplitude and fairly continuous reflector corresponds to 
the base of the Coastal Plain sediments and the transition to the underlying Triassic sediments. The “J” basalt, widely recognized in 
the 1980’s as a distinct and prominent geologic marker that is either below or at the base of the Coastal Plain, does not appear to be 
present in the study area. Absence implies either a restricted spatial distribution of the “J” basalt or uplift and erosion, possibly 
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associated with fault reactivation. Our results further underscore the need for improved understanding of the geographical extent of the 
“J” basalt throughout the SGR basin. We conclude that the absence of the “J” basalt reflector from the study area does not preclude 
subsurface storage of CO2. Substantial evidence abounds for the occurrence of diabase and shale that could serve as effective seals for 
potential CO2 storage within the SGR basin. 
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Introduction

• “J” Basalt Reflector of early middle 
Jurassic (~ 184 Ma) - Lanphere, 1983

• It originated from Schilt et al 1983 
– based on correlations with the Clubhouse 

Crossroads basalt flows in South Carolina
• Interpreted as a laterally continuous, high-

amplitude reflection (Hamilton et al. 1983) 
• Associated with igneous activity during 

formation of South Georgia Rift basin



Schematic Cross section of the 
South Georgia Rift 

Philpotts and Martello, 1986, McBride 1991, Oh et al, 1995 and Holbrook and Kelemen, 1993

Jurassic/Triassic  formations are buried beneath the Coastal Plain



South Georgia Rift Basin

Areal extent of SGR by Heffner 
and Knapp 2011 
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Motivation
• Strategic importance of SEISDATA6 

Coastal Plain profile 
– Previous work done in relation to 1886 Charleston 

earthquake (Behrendt, 1986)

– Covers Triassic basin sediments that are targets for 

CO2 site characterization study 

– Falls within area postulated to be covered by “J” 

reflector



Motivation

Study area (in blue circle) falls within postulated areal coverage of “J” reflector 
(McBride et al 1989)



Motivation

• Lateral extent of the  ‘J’ reflector still 
remains unknown

• Knowing whether or not the ‘J’ reflector 
extends to the study area is key to 
evaluating its regional significance to 
serve as a CO2 reservoir seal



Objectives

• Identify and Interpret subsurface reflectors 
to delineate
– Coastal plain
– Underlying Triassic/Jurassic sediments

• Evaluate regional significance of the ‘J’ 
basalt

• Implication for CO2 sequestration



Methods of Study

1. Adaptive seismic imaging of S6 Coastal 
Plain profile

2. Interpretation of depth-converted seismic 
section

3. Analysis of well logs to substantiate 
interpretations

4. Construct a geologic model of the study 
area 



Adaptive Seismic Imaging Workflow
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AB is a NW-SE dipping reflector had previously been interpreted as the “J” horizon (McBride et al. 1989 and Behrendt, 1986)  



Location of Nearby GA Well
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Analysis of Nearby Georgia Well
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Summary of Information from Other 
Georgia Wells 

Georgia (GA) 
Wells

Distance from
S6 Profile

Total Depth 
(m)

Key 
Observations

Evidence of 
Triassic 
unconformity  

Evidence of 
mafic igneous 
rock

GA 3353 12 miles from 
CDP 9569 – CDP 
9627

1,162 Red beds mixed 
with basic 
intrusive at 368 m

Yes at 359 m Yes, but very, very 
thin layer at 368 
m

GA 3441 25 miles from 
CDP 8121 – CDP 
8312

1,723 Penetrated 
mostly 
sedimentary 
rocks

Yes at 335 m Yes, but very, very 
thin layer at 
1,707 m

GA 3447 27 miles from 
CDP 8298 – CDP 
8393

2,867 Metamorphic 
rock from 2538 m 
to 2867 m (Schist 
and Quartzite)

Yes at 337 m No



Generalized NW-SE Geologic Model
NW SE

Crystalline 
metamorphic rock

Non marine sediments of Late 
Cretaceous/Cenozoic AgeCoastal Plain Sediments of Late Cretaceous to 

Early Cenozoic Age

Triassic basin
1000 m to 1500 m thick

Crystalline 
Metamorphic rock

D
ep

th
 (m

)

Base of Coastal Plain is a:
1. Southeast ward thickening wedge of poorly consolidated sediments
2. Sub-Cretaceous unconformity above Triassic sediments and/or metamorphic 

rock (Snipes et al 1993) 

400

800

1200

1600

0

2000

40 80 120 160 200
Distance (km)



‘J’ Reflector Re-Interpreted

• No ‘J’ Reflector in the study area
• Observed topmost reflector coincides with 

the base of Coastal Plain
• Results corroborated by well data
• Geologic model consistent with known 

geology of buried Triassic basin (Marine, 
1974)



How Significant is ‘J’ Reflector? 

• Geographical extent throughout SGR 
• Ability to serve as a regional seal for CO2

storage
• Recognition as a distinct geologic marker 

in the last 25 years
• Understanding regional tectonics



How Significant is ‘J’ Reflector?

Blue circle: Onshore geographical area covered  by ‘J’ Reflector
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How Significant is the ‘J’ Reflector?

• “J’ reflector does not appear in the study 
area contrary to existing paradigm

• ‘J’ appears to be more areally restrictive 
than previous interpretations

• Areal extent  2, 700 – 2, 800 km2

(onshore)



Implications for ‘J’ Restriction

• May suggest uplift or erosion possibly 
associated with fault reactivation

• Need for improved understanding of the 
lateral extent of the ‘J’ if used as a CO2
reservoir seal

• Absence does not preclude subsurface 
CO2 storage in the SGR
– Presence of diabase that can serve as a seal



Norris Lightsey Well
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Norris Lightsey Well
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Conclusions

• Our new results substantiated by well data have 
redefined the significance of the “J” Basalt 
reflector

• The “J” reflector within study area appears to be 
in fact base of the Coastal Plain

• This is a sub-Cretaceous unconformity that 
separates poorly consolidated sediments from 
underlying Triassic sediments



Conclusions

• Our new interpretations suggest absence of “J” 
Basalt in the study area 

• Absence implies 
– More areally restrictive distribution of “J” Basalt in SGR than 

previous interpretations
– uplift  or erosion possibly associated with fault reactivation 

• Absence of “J” Basalt does not preclude 
subsurface CO2 storage within SGR

• Diabase sills can serve as CO2 seals 
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