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Abstract 
 
Stratigraphic and facies analysis of the Neoproterozoic Wonoka Formation and Patsy Hill Member of the Bonney Sandstone that 
surround Patawarta allochthonous salt sheet permit identification of an isolated suprasalt carapace section of the Wonoka Fm that is 
condensed and lithologically distinct from the correlative minibasin section. The two sections are spatially separated by a 3.8 km wide 
zone of outcropping Callana Group in the Patawarta diapir. 
 
The Wonoka Fm carapace section displays a uniform 14 m thickness of parallel strata over a distance of 2.5 km and lies 
unconformably above the Patawarta salt sheet. The lower 7 m comprises upper-shoreface to foreshore silty lime mudstone and the 
upper 7 m comprises debris-flow facies interbedded with peritidal sandstone and shale capped by lagoonal stromatolitic mudstone. 
Debris-flow clasts were derived from older Wonoka Fm units and the Callana Grp. Equivalent strata in the adjacent minibasin 
comprise outer-shelf to upper-shoreface lime mudstone, siltstone and shale with minor sandstone. These strata form the bulk of a 
tapered composite halokinetic sequence (CHS) that thins (975 m to 117 m) and turns upward (<86 degrees) toward the diapir over a 
distance of 457 m. The uppermost shale unit in the minibasin contains 12 thin, sandy, pebble conglomerate beds, also sourced from 
older Wonoka Fm units and the Callana Grp, that display a progressive unroofing sequence. 
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The carapace and correlative minibasin section record the highstand systems tract (HST) of a 3rd-order depositional sequence. The 
transgressive systems tract (TST) and early HST formed by the lower Wonoka Fm units in the minibasin are not preserved in the 
carapace section. The top of the Wonoka Fm carapace is a sequence boundary (SB) that correlates to a SB in the minibasin formed at 
the contact between the Wonoka Fm and overlying Patsy Hill Member of the Bonney Sandstone. 
 
The debris flow facies in the Wonoka Fm carapace and the correlative conglomerate beds in the minibasin are interpreted to be locally 
derived from strata that were originally deposited atop the ramping Patawarta salt sheet between the carapace and the minibasin. We 
infer that during the process of salt sheet breakout, the tip of the Patawarta sheet became a zone of diapiric inflation forming a local 
topographic high in the margin area, which was eroded during the later part of the HST and shed clasts onto both the carapace and the 
minibasin. 
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Identification of a Neoproterozoic Shelfal Suprasalt Carapace and Correlation to a Tapered Composite Halokinetic Sequence at Patawarta Diapir, Central Flinders Ranges, South Australia
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Stratigraphic and facies analysis of the Neoproterozoic Wonoka Forma-
tion and Patsy Hill Member of the Bonney Sandstone that surround Pa-
tawarta allochthonous salt sheet permit identification of an isolated su-
prasalt carapace section of the Wonoka Formation that is condensed and 
lithologically distinct from the correlative minibasin section. The two 
sections are spatially separated by a 3.8 km wide zone of outcropping 
Callana Fm. in the Patawarta diapir. 

The Wonoka carapace section displays a uniform 15 m thickness of par-
allel strata over a distance of 2.5 km and lies unconformably above the 
Patawarta salt sheet. The lower 7 m comprises upper-shoreface to fore-
shore silty lime mudstone and the upper 7 m comprises debris-flow 
facies interbedded with peritidal sandstone and shale capped by la-
goonal stromatolitic mudstone. Debris-flow clasts were derived from 
older Wonoka units and the Callana Formation. Equivalent strata in the 
adjacent minibasin comprise outer-shelf to upper-shoreface lime mud-
stone, siltstone and shale with minor sandstone.  These strata form the 
bulk of a tapered composite halokinetic sequence (CHS) that thins (975 
m to 117 m) and turns upward (<90 degrees) toward the diapir over a 
distance of 450 m. The uppermost shale unit in the minibasin contains 
12 thin, sandy, pebble conglomerate beds, also sourced from older 
Wonoka units and the Callana Formation, that display a progressive un-
roofing sequence. 

The carapace and correlative minibasin section record the highstand 
systems tract (HST) of a 3rd-order depositional sequence. The trangres-
sive systems tract (TST) and early HST formed by the lower Wonoka 
units in the minibasin are not preserved in the carapace section. The top 
of the Wonoka carapace is a sequence boundary (SB) that correlates to a 
SB in the minibasin formed at the contact between the Wonoka Forma-
tion and overlying Patsy Hill Member of the Bonney Sandstone. 

The debris-flow facies in the Wonoka carapace and the correlative con-
glomerate beds in the minibasin are interpreted to be locally derived 
from strata that originally overlay the margin of the ramping Patawarta 
salt sheet between the carapace and the minibasin sections. We infer 
that during the process of salt sheet breakout, the tip of the Patawarta 
sheet became a zone of diapiric inflation forming a local topographic 
high in the margin area, which was eroded during the later part of the 
HST and shed clasts onto both the carapace and the minibasin.

Abstract

Geologic Setting of the Flinders Ranges, 
South Australia

Figure 11a:
- Neoproterozoic Adelaidean Callanna Group represents the basal strata (evaporite-bearing) of the Adelaide Geosyncline and 
rests unconformably above Archean and Paleoproterozoic metamorphic and igneous basement rocks (Rowlands et al., 1980).
- The Neoproterozoic Adelaidean Warrina Supergroup includes the Callanna and Burra groups which are overlain by the 
Heysen Supergroup divided into the Umberatana and Wilpena groups which contains the Wonoka Formation and Bonney 
Sandstone(Preiss, 2000)  
- The informal members defined are apart of the Wonoka Formation and Patsy Hill Member of the Bonney Sandstone

General Stratigraphy and Snowball Earth

Carapace Defined by Hart et al. (2004) Halokinetic Sequences

Figure 10:
-Patawarta Diapir is one of more than 120 exposed diapirs in South Australia (Preiss, 1987)
-Adelaide Geosyncline forms a north-south trending fold belt 600 km long and 200 km wide
-Stratigraphy deposited late Proterozoic-early Cambrian and is over 20,000 m thick in a rift basin be-
tween the Gawler and Curnamona cratons (Sprigg, 1952a; Preiss, 1973b)    

Previous Maps of Patawarta Area Including Interpreted Carapace
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Figure 12a & b:
-Area mapped by Coats (1973), Hall (1984), by Baker (2009)     

Figure 12c:
-The carapace was previously interpreted as a thrust fault of section by Lemon (1988)  

Models for Advance of Allochthonous Salt 
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Figure 4a: 
-Individual wedge halokinetic sequence before drape-fold deformation 
caused by subsidense and salt rise (modified from Giles and Rowan, 
2011).

Figure 4b: 
-Individual wedge halokinetic sequence after drape-fold deformation 
caused by subsidense and salt rise (modified from Giles and Rowan, 
2011).
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Figure 4c: 
-Progressive development of Tapered CHS
-If there is no continued salt rise or advance, carapace stays on 
top of diapir
-If there is continued salt rise or advance, carapace is rotated 
adjacent to diapir
- (modified from Giles and Rowan, 2011).
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 Formation adjacent to Patawarta salt sheet
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- Evaluate models for salt sheet advancement of emplacment
- Hypothesize differences in Proterozoic shelfal carapace vs. Phanerozoic shelfal carapace
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salt sheet Tapered CHS

c) b) 
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Figure 11b & c:
-Artist depiction of ‘Snowball Earth’ and plate tectonic approximately 600 million years ago
-These environmental conditions allowed for only stromatolites to be recorded in the rock 
record  
-Stromatolites lived on topographic highs created by shefal diapirs and incised valleys adja-
cent to barrier bars created by diapirs

Figure 2a & b:
-Hart et al. (2004) proposed the use of the term “carapace” for a very specific type of supra-salt section 
Criteria:
1) “sequences of strata that are deposited in sub-parallel layers over salt-induced sea floor highs, and which lie semi-conformably atop diapiric 
salt or its relic weld”
2) strata are relatively condensed sedimentologically and are lithologically distinct from coeval and overlying basin-fill assemblages 
3) excludes sediments deposited onto autochthonous salt, syn-post kinematic salt not deposited on a topographic high

-Hart et al. (2004) makes distinction that carapace deposited within the intra-slope depositional environment will consist primarily of: 
1) pelagic to hemi-pelagic mudstones and marls exhibiting high faunal and floral diversity 
2) hemipelagic shales, high microfossil concentrations, and numerous hiatal surfaces, thinner, less sand-prone, condensed carbonate intervals
3) if sand exists, often in the form of turbidite packages

Figure 3a-c:
-The concept of sediments being deposited above allochthonous sheets was first intro-
duced by McGuinness and Hossack (1993) as a thin veneer of mud that protects the salt 
sheet from dissolving and translating laterally during extension

-Harrison and Patton (1995) interpreted these sediments to form in deep-water settings as 
condensed shale sections deposited on bathymetrically-high salt sheets that are rafted by 
spreading salt glaciers downdip

-Moore et al. (1995) also contributed to the carapace terminology by calling the sediments 
“supra-salt stacked condensed sections” 
1) stacked condensed sections conformably deposited upon and coupled to the salt;  2) 
stacked condensed sections that have decoupled from, and extended along, the top of the 
salt
3) coupled or decoupled normal thicknesses of individual sequences resting conformably 
upon the salt
4) coupled or decoupled normal sequences that are significantly youngerthan the sur-
rounding salt flank intervals, suggesting subaqueous erosion, nondeposition, or over 
thrusting

Figure 9: Combined Model: Thrust Advance associated with 
Pinned Inflation (Rowan et al., 2010)
-Interplay between lateral salt supply rate vs. sediment accu-
mulation rate
-Salt supply driven by subsidence of suprasalt minibasin and 
gravity spreading

Figure 6: Salt-glacier model (Fletcher et al., 1995)
-Salt extrudes laterally at sea floor
-Buried by sediment once growth stops

Figure 7: Basal-shear model (Harrison et al., 2004)
-Well data show disrupted zones with anomalous dips 
and ages (rubble zone)
-Interpreted as shear zones formed during emplacement 
of salt and/or basinward translation of overburden plus 
salt

Figure 8: Thrust Advance/Accretionary-wedge 
model (Hudec and Jackson, 2006, 2009)
-Imbricate thrusts in front of sheet
-Folding of salt and advance on roof thrust results 
in subsalt accretionary wedge

Figure 5: Slumped-carapace model 
(McGuinness and Hossack, 1993)
-Scarp relief increases during times of slow 
sedimentation
-Slumping of carapace creates debrite at toe 
of scarp; subsequently overridden as salt ad-
vances

Hudec(from Rowan 2008, modified from Jackson and ,2004)

Fletcher et al., 1995

(Harrison et al., 2004)

(McGuinness and Hossack, 1993)

Pinned inflation

(Rowan, 2010)

Thrust advance
Pinned Inflation

a) McGuinness & Hossack (1993) b) Harrison & Patton (1995)

c) Moore et al. (1995) 

Figure 1:
-Advancing allochthonous salt sheet; forms ramps and flats
-Suprasalt is located above salt sheet
-Subsalt is located below salt sheet
-Suprasalt or subsalt minibasins are depocenters for sediment

Hart et al. (2004)

Moore et al. (1995)

McGuinness & Hossack (1993) Harrison & Patton, 1995

ramp

flat

allochthonous salt sheet

suprasalt

subsalt



Figure 24: soft-sediment defor-
mation; foreshore

Figure 21: low angle cross 
bedding; lower shoreface

Geologic Map of Patawarta Diapir and Adjacent Neoproterozoic Strata 

Interpretation of Depositional Environments

Identification of a Neoproterozoic Shelfal Suprasalt Carapace and Correlation to a Tapered Composite Halokinetic Sequence at Patawarta Diapir, Central Flinders Ranges, South Australia

Hearon 2009

Figure 18: bi-modal arkosic sandstone;
 barrierbar or flood tidal delta

Fence Diagram and Photographs of Wonoka Formation and Patsy Hill Member of Bonney Sandstone
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Figure 15: hummocky cross 
stratification; wave-dominated 

lower shoreface

Figure 16: flute casts; wave-
dominated lower to upper shoreface

Figure 22: hummocky cross stratifi-
cation; wave-dominated
lower to upper shoreface

Figure 20: black shale and dolomitic 
concretions; main tidal channel inlet

Hearon 2009

Figure 19: conglomeratel and crypt 
algal laminae; main tidal channel 

inlet

Figure 30: 
-The Wonoka Formtion (undifferentiated, lower lime-
stone, middle limestone, upper limestone, and green 
mustone member) form on a wave-dominated shelf 
that shallows to a coastal plain depositional environ-
ment
-The Wonoka Formation was deposited during the 
Highstand Systems Tract 

Figure 31: 
-The Patsy Hill Member (lower limestone, 
sandstone, and upper limestone beds) form 
on a tidally-dominated shelf 
-The Patsy Hill Member was deposited 
during the Lowstand Systems Tract

Figure 14: 
-The Wonoka Formation forms the highstand systems tract of a 3rd order depositional sequence
-The Patsy Hill Member of the Bonney Sandstone forms lowstand systems tract of the overlying 
3rd order depositional sequence
-The sequence boundary between the two sequences forms an incised valley cutting into the 
Green Mudstone Member which is filled by the Patsy Hill Member 

Figure 13: 
-The Wonoka Formation and Patsy Hill Memeber of the Bonney Sandstone deposited locally as a suprasalt carapace section and 
subsalt section
-The Wonoka Formation and Patsy Hill Member for one tapered-composite halokinetic sequence 
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Correlating Suprasalt Carapace to Subsalt Stratigraphy 

Figure 34a-d: 
a) litharenite carapace; b) quartz arenite in green mudstone mbr; 
c) quartz arenite carapace; d) litharenite in subsalt minibasin

Unroofing of Suprasalt Carapace Re-
corded in HST Green Mudstone 
Member in Subsalt Stratigraphy

Figure 33: 
-Correlation of carapace (Section M) to subsalt stratigra-
phy and depositional sequence stratigraphy
-Unroofing takes place when sea level begins to drop at 
the end of the HST
-Patsy Hill Member was not deposited on carapace be-
cause it was subaerially exposed during the LST

Correlating Subsalt Sequence Stratigraphy to Carapace Section

Pinned Inflation and Unroofing: Mechanism for Allochthonous 
Salt Advancement

Figure 40: 
a) High sedimentation rates 
during the HST begins to ‘pin’ 
down the toe/tip of ramping salt 
sheet
  
b) Only during the HST is cara-
pace deposited on the shelf be-
cause rising sea level

c) High percentange of sand-
stones are preserved on cara-
pace

Location of 
barrier bar

Location of 
unroofing 
sequence

minibasin

a) b)

c) d)

Figure 36: Sandstone litholo-
gies in minibasin stratigraphy   

Figure 37: Composition of lith-
arenite in specified members  

Figure 38: 
-Suprasalt vs. subsalt stratigraphy

d) As sea level drops during 
latest HST, unroofing of 
carapace is deposited in 
green mudstone member

e) Barrier bar forms in front 
of ramping salt sheet creat-
ing a topographic high

f) Thrust break out occurs 
after deposition of upper do-
lomite beds above HSB due 
to a drop off in sedimenta-
tion rates

Proterozoic vs. Phanerozoic Carapace

minibasin

a)

b)

c)

d)

e)

f)

Progressive pinning of salt
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Figure 35: 
-Schematic diagram of unroofing se-
quence
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Characteristic Precambrian
(Patawarta Diapir)

Cambrian
(Wirrealpa Diapir)

Exploration
Significance

Carapace facies sandy carbonate and 
calcareous floodplain

reef, back reef, 
bioherm

different source, 
reservoir, or seal 
composition

Subsalt facies unroofing of carapace 
as 

reef debris as talus  drilling hazard in 
subsalt plays

Halokinetic sequence
style

wedges dominate wedges and hooks drilling hazard in 
subsalt plays

Overall lithology siliciclastic dominated carbonate dominated different source, 
reservoir, or seal 
composition

Structural response 
above toe of salt

folding (drape-fold
monocline)

faulting (grabens) trap mechanism, 
drilling hazard

Sequence stratigraphy
during HST

highly dependent on 
sediment supply; more
accommodation space

carbonate producers 
keep up with sea level; 
less accommodation 
space

difference in source, 
reservoir, or seal 
thickness

c) Precambrian vs. Cambrian Shelf Carapace and Allochthonous Salt Advance 

-Correlation of suprasalt and subsalt sections (14 m carapace vs. 975 m subsalt)
-Suprasalt section is ‘carapace’ according to Hart et al. (2004) defined list of attributes
-Shelfal carapace primarily formed during late highstand systems tract and was exposed 
and eroded during lowstand systems tract, and forms during transgressive systems tract
-Allochthonous break-out by pinned inflation at the tip of the salt sheet associated late 
highstand erosional thinning of carapace permitted by break out
-Proterozoic carapace great analog for Gulf of Mexico because lacks carbonate producers 
and reef builders

Characteristics Intra-slope (Hart et al., 2004) Shelfal (Kernen et al., 2011)

Lithology pelagic to hemi-pelagic 
mudstones and marls

litharenite sandstones, 
debris flows, silty
carbonate

Stratigraphic significance hiatal surfaces, thinner, 
less sand prone, condensed 
carbonate intervals

hiatal surfaces, 
significantly thinner (14 m 
vs. 975 m), more sand 
prone

Exploration significance provides a great seal for 
stratigraphic traps

due to high sand content 
may leak hydrocarbons; no 
seal

Comparison of Intra-slope and Shelfal Carapce

Figure 41: 
a) depositional model for Proterozoic carapace  
b) depositional model for Phanerozoic carapace
c) chart comparing Proterozoic vs. Phanerozoic shelfal carapace

sea level

sea level
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d)

b)

Correlating Sequence Stratigraphy
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Figure 38b:
-Lowstand erodes carapace thus creating 
a hiatal surface

Figure 39c:
-Transgressive systems tract buries cara-
pace
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thonous salt sheet
-Carapace section deposition

HST

Eustasy
low

high

Time

coastal plain shoreface

slope

shoreface

1, 000 m

erosion




