Hydraulic Re-Fracturing*

Neil Stegent¹

Search and Discovery Article #40837 (2011) Posted November 14, 2011

*Adapted from presentation at AAPG Geoscience Technology Workshop, "International Shale Plays," Houston, Texas, September 27-28, 2011

¹Pinnacle-A Halliburton Service (<u>neil.stegent@pinntech.com</u>)

Abstract

A discussion and review of re-fracturing of both vertical and horizontal wells. Discussion of basic fundamentals of hydraulic fracturing, reasons to re-frac, candidate selection, operational considerations, and case histories.

Re-Frac Case History Papers

(not all inclusive)

Vicksburg, S. Texas SPE 4118
Canyon Sand, Texas SPE 4800
Escondido Sandstone, Texas SPE 7912
J Sand, Wattenberg, CO SPE 7936
Undisclosed "low pressured field", SPE 14376
Oak Hill, Cotton Valley E TX + LA SPE 14655
Morrow, Red Fork, Atoka, OK SPE 18861
Smackover, Mississippi SPE 19768
Mesaverde Group, CO & NM SPE 24307
McAllen Field, Vicksburg, S. Texas SPE 24872
Eastern Gas Shales-Antrim, MI and
Appalachian Shales SPE 26894
Mendota, Granite Wash, TX SPE 27933

Antrim Shale, MI SPE 29172
Gray Sand, Cotton Valley, LA SPE 29554
Almond/Wamsutter, WY SPE 30480
Green River Frontier, WY
+ Piceance Basin, CO SPE 55627
Piceance Basin, CO and GGRB, WY SPE 56482
Viking, Ferrier, Alberta Pet Society 99-60
Barnett Shale, TX SPE 63030
Cotton Valley TX SPE 63241
Codell, DJ Basin, CO SPE 67211, 71045, OGJ 2006
Medicine Hat, Milk River, Alberta SPE 81730
S. Texas undisclosed field E&P 2006

SPE 134330 by Mike Vincent

Refracs - Why do they work, and Why do they Fail in 100 Published Field Studies?

25 page Paper + 4 pages of paper references (120) + 15 pages of "findings" from re-fracs (130)

Hydraulic Fracture Design

What is a Hydraulic Fracture?

What's Fractures Really Look like......

What's Fractures Really Look like.....

Initial Hydraulic Fracture Completion:

Reasons to Refrac:

- Improve original fracture conductivity
- Alter fracture geometry
- Restoration fracture conductivity of Proppant
 - Embedment
 - Stress cycling
 - Diagenesis
 - Scale/Fines
- Restore near-wellbore conductivity
- Stimulating "by-passed" pay intervals
- Utilize new Technology
- Re-energizing or re-inflating natural fissures
- Fracture reorientation due changes in the stress field
 - refrac often contacts "new" rock

Embedment - SPE 135502

Reasons to Refrac:

- Improve original fracture conductivity
- Alter fracture geometry
- Restoration fracture conductivity of Proppant
 - Embedment
 - Stress cycling
 - Diagenesis
 - Scale/Fines
- Restore near-wellbore conductivity
- Stimulating "by-passed" pay intervals
- Utilize new Technology
- Re-energizing or re-inflating natural fissures
- Fracture reorientation due changes in the stress field
 - refrac often contacts "new" rock

Embedment - SPE 135502

Increase Original Job Size

Restimulation of Oil Wells SPE 101821

Fig. 14 – Restimulation Treatment Sizes were 135% Larger

Fig. 15 – Reservoir Pressure declined approximately 15%

- Despite pressure depletion of ~15%, refracs provided large benefits
- Refracs were designed to improve conductivity, proppant mass increased by 135%.

Restimulation of Oil Wells – Increased Job Size SPE 101821

Production from restimulated wells increased by an average of 37 t/day (~ 275 bbls/Day)

Alter Original Geometry

Re-fracture due to change in rock Stress

Re-fracture due to change in rock Stress

Re-Fracture Treatment Results in Longer Fracture

Original Fracture Grows
Upward and is Short

© 2011 HALLIBURTON. ALL RIGHTS RESERVED.

Re-fracture due to change in rock Stress

Restore Fracture Conductivity

Re-fracture to remove near wellbore damage

Reasons to Refrac: Candidate Selection

- Improve original fracture conductivity
- Alter fracture geometry
- Restoration fracture conductivity of Proppant
 - Embedment
 - Stress cycling
 - Diagenesis
 - Scale/Fines
- Restore near-wellbore conductivity
- Stimulating "by-passed" pay intervals
- Utilize new Technology
- Re-energizing or re-inflating natural fissures
- Fracture reorientation due changes in the stress field
 - refrac often contacts "new" rock

Embedment - SPE 135502

New Technology: By-Passed Pay

Increased Production: Re-frac by-passed Pay Zones

Reasons to Refrac: Candidate Selection

- Improve original fracture conductivity
- Alter fracture geometry
- Restoration fracture conductivity of Proppant
 - Embedment
 - Stress cycling
 - Diagenesis
 - Scale/Fines
- Restore near-wellbore conductivity
- Stimulating "by-passed" pay intervals
- Utilize new Technology
- Re-energizing or re-inflating natural fissures
- Fracture reorientation due changes in the stress field
 - refrac often contacts "new" rock

Embedment - SPE 135502

Re-Frac with Different Frac Design: SPE 95568

Original Frac: Viscous Polymer Gel Fluid

Re-Frac: Low Viscosity Water Frac Fluid

Re-Frac with Different Frac Design: SPE 95568

Fracture Re-Orientation

Re-fracture Reorientation - Barnett Shale SPE 63030

Re-Frac Reorientation Concept

Re-fracture Reorientation - Barnett Shale SPE 63030

Re-fracture Reorientation - Barnett Shale SPE 63030

		Volumes		Fluid
Well		Proppant		Type
		lb	Gal	
Well C	Initial	360,000	225,000	75% N2 Foam
	Refrac	1,060,000	515,000	Crosslinked Gel
Well A	Initial	Unknown	Unknown	Crosslinked Gel
	Refrac	63,000	721,000	Light Sand Frac
Well B	Initial	1,291,000	437,000	Crosslinked Gel
	Refrac	92,000	715,000	Light Sand Frac

Reasons to Refrac:

- Improve original fracture conductivity
- Alter fracture geometry
- Restoration fracture conductivity of Proppant
 - Embedment
 - Stress cycling
 - Diagenesis
 - Scale/Fines
- Restore near-wellbore conductivity
- Stimulating "by-passed" pay intervals
- Utilize new Technology
- Re-energizing or re-inflating natural fissures
- Fracture reorientation due changes in the stress field
 - refrac often contacts "new" rock

SPE 134330 by Mike Vincent
Refracs - Why do they work, and Why do they Fail
in 100 Published Field Studies?

Embedment - SPE 135502

