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Abstract 
 
This paper presents the first preliminary results of a 3-year R&D project led and funded by Eni with the aim of supporting the 
development of an innovative methodology based on the integration of remotely sensed data and field geology. The complete set of 
remotely and locally sensed data is: 
 
● Passive data of high and medium resolution satellite multispectral data, and hyperspectral airborne imagery; 
 
● Active data of low to medium resolution satellite C and L band radar data, and airborne X and L band radar data; 
 
● Surface geology, spectral data, mineralogical analysis, acquired over a well defined test area in the Dolomites (NE Italian Alps), 
characterized by the outcropping (with different type of soil coverage) of sedimentary, volcanic and volcanoclastics lithologies.  
 
Further acquisitions in deserted areas are planned for the next project phase in North Africa. The development of proprietary 
processing algorithms and spectral libraries will be a key result to be achieved. The elaboration of a comprehensive surface geological 
model based on integration of ground data, spectral signatures, image textures and physical properties of radar data would be part of 
the routine set of activities during early phases of exploration onshore projects. 
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Mapping Lithology Using Aerial Hyperspectral Data 
 
Following a separability analysis phase carried out on in situ hyperspectral data, which has highlighted some important issues for the 
thematic mapping of outcrops (Pompilio et al., 2009; Pompilio et al., 2010), the focus of work using optical remote sensing data has 
become the geolithological mapping of outcrops in the study area (Alpe di Siusi, Trentino-Alto Adige, Italy). The recognition of 
geological features through remote sensing has been traditionally circumscribed to two applications: 1) the recognition of shapes and 
physical characteristics of the landscape, as obtained from satellite images, orthophotos and DEM derived from other remote sensing 
techniques, and 2) the recognition of the surface mineralogy based on hyperspectral imaging techniques. 
 
The purposes of this work, for what concerns the optical remote sensing dataset, are centered on geolithotypes recognition. These 
recognition capabilities are based on the reflectance characteristics of rock materials as a function of the presence of certain chemical 
species, in particular of certain negative and positive ions present in the rock (Hunt and Salisbury, 1971; Farmer, 1974). A traditional 
geological map is therefore not reproducible from remote sensing because it usually exploits and takes advantage of a wide range of 
knowledge and correlations, stratigraphic, structural, and geometric information which can be derived only from direct survey on site. 
 
The geolithotypes mapping consists in the characterization of the outcrops of the area which has been carried out using both 
supervised classification methods (Villa et al., 2011), based on data derived from hyperspectral in situ campaigns and MIVIS aerial 
data (September 2nd, 2010), and from unsupervised classification methods in the context of analysis of mapping capabilities for 
different geolithotypes assessing hyperspectral data classification derived solely from remote sensing without a priori knowledge of 
the spectral characteristics of the geological targets. 
 
All classifications were carried out on atmospherically corrected data (Richter, 2009) and have been performed masking only the rock 
and soil outcropping areas not covered by shadows, in order to focus on clustering and classification of those areas where the 
geological features are visible on the surface. Geolithotypes classifications have been performed using three different techniques of 
unsupervised classification and three different techniques for supervised classification. The supervised algorithms used for this 
mapping are the Spectral Angle Mapper (SAM), the Minimum Distance (MD) and the Spectral Feature Fitting (SFF), while the 
unsupervised approaches exploit Self-Organising Maps (SOM), ISODATA clustering, and Minimum Noise Fraction transform 
(MNF). The decision to use such different approaches is justified by the need to evaluate the pros and cons of different techniques 
(image-based or knowledge-based) with regard to their transferability to other situations even less known and controlled than the study 
area. 
 
All in all and taking into account the intrinsic limitations of the overall approach, we can conclude that the application of remote 
sensing techniques to outcrops geolithotypical classification on the study area (Alpe di Siusi) has given satisfactory results so far. 



Moreover, given the pros and cons of the tested approaches, we can consider that a hierarchical classification that establishes the 
different methods, based on their best performance and integration of information from other sources (thermal properties of rocks, 
DTM derived from LiDAR, georadar and aerial SAR data), as for example some literature recently begun to take into consideration 
(Chen et al., 2010), could be an optimal solution for enhancing the contribution of remote sensing data and techniques to geolithotypes 
mapping in carbonatic basins. 
 

Mapping Lithology Using Synthetic Aperture Radars 
 
Another technology under investigation in the frame of GEOSAT is Synthetic Aperture Radar (SAR) 2D and 3D imagery. A SAR 
system is basically constituted by a radar sensor transmitting and receiving electromagnetic waves as it is flown onboard a moving 
platform like an aircraft or a satellite. Platform motion allows synthesizing a virtual antenna, as long as several hundreds of meters in 
the airborne case or several kilometres in the spaceborne case, resulting in the possibility to yield images of the targets response to the 
impinging waves with a spatial resolution on the order of 1 meter. This provides sensitivity to relative permittivity and surface 
roughness, therefore bringing information about electromagnetic and morphological features of the targets. Moreover, depending on 
the frequency, electromagnetic waves may be able to penetrate dense vegetation layers down to the ground making it possible to 
investigate physical properties of the ground even in the presence of dense forest. Finally, modern SAR sensors are capable of 
operating with different combinations of wave polarization (i.e. different directions of the electric field associated with the wave). 
Especially at low frequencies, different polarizations exhibit different sensitivities to target features which helps the extraction of 
target features. For all these reasons, SAR imagery appears to have the capability to complement measurements from LIDAR or 
hyperspectral sensors, possibly revealing new insights about lithological exploration through remote sensing. 
 
The data collected so far in the frame of the GEOSAT project consists of more than 60 airborne polarimetric SAR images acquired 
over the Italian Dolomites. The SAR sensor has been built and operated by MetaSensing. Data analysis is being carried out by 
Politecnico di Milano. The frequency of operation has been chosen to be 1310 MHz (L-Band). Such a choice allows the usage of 
compact hardware equipment while granting good penetration capabilities. 
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Figure 1. Geolithological maps derived from MIVIS hyperspectral data using supervised approach, Minimum Distance Classifier (b), and 
unsupervised approach, SOM (Self-Organising Maps) (c). On the left, the geological map of the study area (Alpe di Siusi, Trentino-Alto Adige, Italy) 
used as reference (a). In green shades vegetated areas are depicted. 
 
 

 
 

Figure 2. L-Band SAR amplitude image collected over the Catinaccio, Northern Italy. 
 




