
Magnesium Isotopes in Dolomites – Results for the Paleozoic of Eastern Canada and Significance for 
Exploration Models* 

 
Denis Lavoie1, Simon Jackson2, and Isabelle Girard2 

 
Search and Discovery Article #40786 (2011) 

Posted August 8, 2011 
 
*Adapted from oral presentation at AAPG Annual Convention and Exhibition, Houston, Texas, USA, April 10-13, 2011 
 
1Natural Resources Canada, Geological Survey of Canada, Quebec City, QC, Canada (delavoie@nrcan.gc.ca) 
2Natural Resources Canada, Geological Survey of Canada, Ottawa, ON, Canada 
 

Abstract 
 
The processes that form high temperature dolomites are controversial, with end-members of 1) tectonically controlled early processes 
with rapid upward migration of high temperature fluids, and 2) burial-dominated late processes with regional slow migration of high-
temperature brines. Magnesium stable isotope ratios in saddle dolomites, ultramafics and shales are presented and offer critical new 
data in the ongoing debate. 
 
Hydrothermal saddle dolomites in eastern Canada overly diverse Precambrian and Paleozoic basements, which may have acted as Mg 
sources. The dolomites and potential Mg sources were chemically characterized (ICP-ES) and their δ26MgDSM3 and δ25MgDSM3 ratios 
measured (MC-ICP-MS). Column chemistry was used to purify the Mg in the digested samples prior to isotopic analysis. 
 
The Lower Silurian dolomites (Th of 150 to 200°C) are related to fluid flow along foreland faults. The Mg2+ was interpreted to 
originate from Ordovician ultramafic slivers. Near the Silurian occurrences, Lower Ordovician dolomitized slope carbonates are 
associated with a transpressional fault. These two dolomites have yielded negative δ26MgDSM3 values ranging from −3.2 to −1.5‰. 
 
Middle Ordovician dolomites (Th of 90 to 120°C) are associated with foreland faults that reach the Precambrian metamorphic 
basement. They yielded δ26MgDSM3 ratios of −1 to −0.7‰. Lower Devonian reef with massive replacement dolomite of magmatic 
origin (Th of 300 to 350°C) occurs at the junction of two transpressional faults. Even though the reef neighbours the ultramafic slivers, 
the dolomite has δ26MgDSM3 ratios around −1‰. 
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Linear relationships between dolomite δ26MgDSM3 and 1) δ18OVSMOW of the fluid and 2) 87Sr/86Sr in the dolomite suggest a link with 
the nature of the fluid and its source. Linear relationships between δ26MgDSM3 and Th of fluid inclusions indicate a thermal kinetic 
effect on Mg2+ incorporation in the dolomite. 
 
Data from potential Mg sources are being gathered. Lower Ordovician ultramafics are serpentinized; the altered material has a tight 
range of δ26MgDSM3 values of −0.4 to −0.2‰. Lower and Upper Ordovician shales abound in the Lower Paleozoic basin. The shales 
have Mg isotope ratios that differ with age; the Lower Ordovician has yielded δ26MgDSM3 values of −0.8 and +0.1‰ whereas the 
Upper Ordovician has given δ26MgDSM3 values of −1.2 and −1‰. 
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Dolomite facts

2 Over 60% of remaining conventional oil and gas are in carbonate
reservoirsreservoirs 

Of these carbonate reservoirs, dolomite is the most prolific type as
lifi d b h G A b D d N h Fi ldexemplified by the Gawar Arab-D and North Field

But there is dolomite and there is also dolomite

Different mechanisms and settings can result in dolomitization or
dolomite precipitationdolomite precipitation

The precise origin for dolomitization has significant impact on
l i iexploration strategies



The HTD model
If dolomite results from early fault-driven fluid flow
this has significant impact on exploration strategies
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this has significant impact on exploration strategies
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Interpreted HTD fields and
prospects are numerous in Canada
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One of the (many) contentious points is the
source of Mg for extensive dolomitization
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5. Crystalline basement
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Québec

Saddle dolomite samples from 
interpreted HTD in the Paleozoic of Quebec
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A link between the Gaspé saddle dolomites
and faults and mafic-ultramafic bodies
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Lower Ordovician
Slope carbonates in northern Gaspé 
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Lower Ordovician
Slope carbonates in northern Gaspé 
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Upper Ordovician
TBR on Anticosti and southern Qc
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TBR on Anticosti and southern Qc
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Geochemistry
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Lower Silurian
Massive dolomitization along faults
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Geochemistry
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Lower Devonian
Magmatic-driven dolomitization 
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along Devonian faults
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Lower Devonian
Magmatic-driven dolomitization 
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along Devonian faults
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Geochemistry
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Magnesium isotopes and dolomites

Fundamentals
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Fundamentals

3 natural isotopesp
24Mg: 78.99%
25Mg: 10%
26Mg: 11 01%26Mg: 11.01%

Seawater has a fairly 
26constant 26Mg of 

-0,82l Young and Galy (2004, Rev. Min. & Geoch.)

In a three isotopes system
fractionation in isotopic equilibrium will generate a correlation slope 
of 0.521 whereas if fractionation is controlled by kinetic processes, theny p ,
the slope is 0.511



Mg isotope data in Paleozoic saddle dolomite
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Mg isotope data in Paleozoic saddle dolomite

Temperature of precipitation (Th of FI)
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Mg isotope data in Paleozoic saddle dolomite
No relationship between 18O and 26Mg
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Mg isotope data in Paleozoic saddle dolomite

Relationship between fluid composition and 26Mg
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Relationship between fluid composition and  Mg
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Mg isotope data in Paleozoic saddle dolomite

Relationship between fluid composition and 26Mg
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Relationship between fluid composition and  Mg
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Conclusions
(very preliminary)
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( y p y)

Mg isotopes ratios in high temperature saddle dolomites 
1 Show spatial basement-related variations with Ordovician1. Show spatial, basement related variations with Ordovician 

and Silurian samples from Gaspé being depleted in heavy  
25Mg and 26Mg compared to southern Quebec TBR HTD.

2 Th D i i l d l it i G é i i t f2. The Devonian pinnacle dolomite in Gaspé originates from a 
different fluid compared to adjacent Silurian and Ordovician
dolomites (Magmatic fluid; Lavoie et al, AAPG Bull 2010).

3. Kinetic control of isotopic fractionation is detected in
the relationship between 25Mg and Mg and between
26Mg and Th of FI Mg and Th of FI

4. The composition of the fluid (e.g, its source) also control 
Mg isotope composition as shown by the relationship
b t 26M d 87S /86S d 18O fl idbetween 26Mg and 87Sr/86Sr and 18OSMOWfluid



In progress and future works
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1. Analyse matrix dolomites associated with the saddle ones

2. Analyse non-HTD dolomites (reflux, normal burial)2. Analyse non HTD dolomites (reflux, normal burial)

3. Analyse possible Mg+2 source (UM, mafic volcanics, shale)



Preliminary 26Mg data from potential
Mg source rocks

25
0,2

x

Lower Devonian

-0,4

-0,2

0

M
3)

x

x

Lower Silurian

Middle Ordovician
(TBR)

-0,6

-0,8

-1,0/2
4 M

g (
D

S
M

+ +

Lower Ordovician

-1,2

-1,4

-1 6

2
5/

+ Upper Ordovician shale

x Lower Ordovician shale1,6

-1,8

-2,0-2,5-3,0-3,5 -1,5 -1,0 -0,5 0 0,5

Lower Ordovician ultramafics

26/24Mg(DSM3)



Thank you!
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F   i fFor more info:

http://gdr.nrcan.gc.ca p g g
and
http://gsc.nrcan.gc.ca/org/quebec/




