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Abstract

Porous carbonates typically contain a wide range of pore sizes and shapes that are difficult to capture with existing pore type classifications.
These classifications are insufficient to relate complex pore structures to physical properties. The analysis of pores on digital photomicrographs
is an objective, repeatable, and quantitative methodology that analyzes the size distribution and describes the shape of the pore system. Pore
shape parameters derived using digital image analysis (DIA) capture complicated pore structure and help explain the variability of physical
parameters such as acoustic velocity, electrical resistivity (formation factor), and permeability.

The pore size distribution is captured using the parameter Dominant Pore size (DOMsize), a quantitative measure taken from the cumulative size
distribution. The complexity of the pore system is measured by the perimeter over area (PoA). PoA (the 2 dimensional equivalent to the specific
surface) captures of the overall intricacy of the pore system. Both parameters show high correlation to variations in physical properties.

For example, it has been shown that at a given porosity, samples with simple large pores have higher velocity than samples with an intricate pore
network dominated by small pores. This trend is reflected in DIA parameters.

Variations in the formation factor are also related to the pore size and shape. This can be documented in plots of porosity vs. formation factor
with DIA parameters superimposed. Samples with a low value of PoA and high DOMsize have relatively high formation factor values, whereas
samples with high values of PoA and low DOMsize have low formation factor values. This indicates that for a given porosity samples with
simple large pores have higher resistivity than samples with an intricate pore network dominated by small pores.
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Theoretically, both pore size and specific surface influence permeability. Samples with low permeability at a given porosity have high values of
PoA and low values of DOMSize and vice versa. A caveat, however, are moldic rocks which can have high DOMsize with low permeability due
to poor connectivity of the large pores.

Both pore size and pore system intricacy as defined by digital image analysis are highly correlated to acoustic velocity, permeability, and
electrical resistivity. A combination of these pore shape parameters with porosity is capable of substantially improving inverting pore structure
from down hole logging data.
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Approach: Integrating elastic, electrical, and geometric measurements to
increase the predictability of petrophysical properties

Geometric Attributes Physical Properties
Core Plug =

Roundness, PoA, DOMsize, ..... Velocity, Resistivity, Porosity, Permeability ...

Key Points:

> Digital Image analysis (DIA) can be used as an objective tool to capture and describe
Pore Network Geometry in a repeatable, quantitative way.

> The DIA parameters Perimeter over Area (POA) and Dominant Size (DOMSize) show ex-
cellent correlations to, acoustic velocity, electrical resistivity, and permeability.

> Integration of these relationships can improve estimation of either physical or pore
shape parameters from logging data.

Abstract:

Porous carbonates typically contain a wide range of pore sizes and shapes that are difficult to capture with existing pore type classifications. These
classifications are insufficient to relate complex pore structures to physical properties. The analysis of pores on digital photomicrographs is an
objective, repeatable, and quantitative methodology that analyzes the size distribution and describes the shape of the pore system. Pore shape
parameters derived using digital image analysis (DIA) capture complicated pore structure and help explain the variability of physical parameters
such as acoustic velocity, electrical resistivity (formation factor), and permeability.

The pore size distribution is captured using the parameter Dominant Pore size (DOMsize), a quantitative measure taken from the cumulative size
distribution. The complexity of the pore system is measured by the perimeter over area (PoA). PoA (the 2 dimensional equivalent to the specific
surface) captures of the overall intricacy of the pore system. Both parameters show high correlation to variations in physical properties.

For example, it has been shown that at a given porosity, samples with simple large pores have higher velocity than samples with an intricate pore
network dominated by small pores. This trend is reflected in digital image analysis parameters. Low values of PoA and high values of DOMsize
occur in samples with relatively high velocities for their given porosity while high values of POA and low values of DOMsize are observed for low
velocity samples.

Variations in the formation factor are also related to the pore size and shape. This can be documented in plots of porosity vs formation factor with
DIA parameters superimposed. Samples with a low value of PoA and high DOMsize have relatively high formation factor values, whereas samples
with high values of PoA and low DOMsize have low formation factor values. This indicates that for a given porosity samples with simple large pores
have higher resistivity than samples with an intricate pore network dominated by small pores.

Theoretically, both pore size and specific surface influence permeability. Samples with low permeability at a given porosity have high values of PoA
and low values of DOMSize and vice versa. A caveat, however, are typical moldic rocks which can have high DOMsize values but a retarded
permeability due to poor connectivity of the large pores.

Both, pore size and pore system intricacy as defined by digital image analysis are highly correlated to acoustic velocity, permeability, and electrical
resistivity. A combination of these pore shape parameters with porosity is capable of substantially improving inverting pore structure from down
hole logging data.




Cross Polarized Light for Accurate Image Segmentation

Images are acquired at 5 mm/pixel resolution and full thin section photomicrographs are constructed
from plain-polarized light and XPL at different angles. An XPL variation attribute is calculated and
used as additional information during image segmentation to distinguish air bubbles in pore spaces
not filled with dyed resin.

RGB vs. HSV: the pros and Porespace Segmentation
cons of colorspaces using XPL variation

47 In RGB space, no single band contains a narrow range
capable of delineating individual colors (e.g. blue)

In HSV space, narrow ranges within the hue band are
capable of delineating individual colors (e.g. blue)

H = Hue : A unit that specifies the “colour” of the colour
S = Saturation : Specifies how much black, white or gray is mixed with the colour.
V = Value : Corresponds to Brightness.

Yellow

lllustration of the process of determining XPL variation
from digital images.

Image (A) was acquired using plain polarized light.
Images (B)-(D) were acquired under cross-polarized
light (XPL) at different angles (0°-40°). The XPL
variation attribute is calculated as the mean absolute
variation in light intensity between images (B)-(D). On
the resulting XPL variation gray scale image (E), the
pore space are predominantly black.

Example of blue color  Comparable blue color is Remaining ambiguity in

spread over wide range concentrated on narrow the wight and black range

on all three RGB bands. range in the hue band in can be resolved through
HSV space. XPL

An XPL Image Segmentation Example

Image (A), acquired using plain polarized
light, shows a thin section that is
impregnated with blue epoxy resin. Minerals
and grains are beige, whereas pore space is
blue except for air bubbles that are identical
in color to the minerals. The intensity image
of XPL variation (B) covers the same area.
Histograms of color and XPL distribution
from subsections a) and b) illustrate that the
RGB color bands of the subsection are
almost identical, but the XPL variation of
intensity is clearly different in regions of
minerals and air.
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Digital Image Analysis Tool “Erika”

“Erika” is an easy to use tool that provides semi automated batch capability for mosaic
creation, image segmentiation, particle analysis and reporting.
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Digital Image Parameters Describing Thin Section Geometry

Unique and quantitative description of shapes is a major challenge. No single parameter can
unequivocally capture a 2-D shape. A combination is required to distinguish between pores of similar
geometric characteristics.

Geologlcally, what do these

Digital Image
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vs.
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Images
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The Relationship between Digital Image Parameters
and Acoustic Velocity and Porosity

These two crossplots show geometric parameters (superimposed in color) in velocity-porosity
space. They are compiled using predominantly limestone samples. Both figures clearly suggest
the existance of a relationship between geometric parameters and velocity deviations
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Relationships

Estimators Used for Velocity Prediction R?

Porosity (¢) 0.490
Porosity & y 0.524
Porosity & DOMsize 0.684
Porosity & PoA 0.762
¢, v, DOMsize & PoA 0.786

Correlation coefficients from five multivariate
linear regressions using different input variables.
A combination of three parameters with porosity
significantly improves the correlation.

7000

Dominant Size

Perimeter over Area

Perimeter over Area (PoA) gives most Additional
Information to Estimate Porosity from Velocity

2000
1500 ®

- ¢ . . /
/ 3;‘

ooy
<fe_
4‘4“‘ L]
0.2
¢ 04

500

-500

1000

5000 6000 7000

VP

2000 3000 4000

300
200 -

100

-100

“opy 5000 4000 3000 2000
VP

Iy 0 7000




The Relationship between Extended Biot Theory and
Pore Space Geometry in Carbonate Rocks

The simplified EBT model presented by
Sun et al. (2001) expresses velocity
through the nine equations listed below
(for detailed derivations of these equations

see Sun, 1994)

where

Ve

V, = compressional velocity

V, = shear velocity
K = bulk modulus
u = shear modulus
p = bulk density

ps = bulk density of the solid

pr = bulk density of the fluid

K, = bulk modulus of the solid

K; = bulk modulus of the fluid

4 = shear modulus of the solid
¢ = porosity

¢ = effective porosity

F = effective coupling factor

S fu 7 yu = frame flexibility factors
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Estimating Permeability from Velocity and
Pore Space Geometry in Carbonate Rocks
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The Challange:

Separate Rocks with Simple

Pore Space Geometries (stiff rocks)
that have connected pore networks
from those with unconnected

pore networks

VS.

Both of these types of rocks

have low PoA and high DOMSize.
They show high velocities for their
given porosity and have low v,

Almost all rocks fitting this
description have excelent
flow properties,

but some oomoldic rocks have
little Permeability.




Effects of Pore Space Geometry on Electrical
Resistivity in Carbonate Rocks

Electrical Resistivity & Archie’s Law Formation Factor and Pore Geometry

Fzgo-m cementation factor Cementation factor Microporosity

Where,
F=R /R,

¢ = porosity
F = formation resistivity factor

R, = resistivity of fully saturated
rock (100% saturation)

R, = resistivity of pore fluid
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stone).

Log,, DomSize (um)

Samples with high dominant pore size and low perimeter
over area have a high cementalion factor for a given porosity.

Samples wilth low dominant pore size and high perimeter
over area have low cementation factor values.

Formation factor (-)
Formation factor (-)

Explanation:

In natural rocks many more pores (and pore connec-
tions) need to exist in rocks with smaller pore sizes than
in rocks with larger pores in order to maintain equal po-
rosity (see synthetic example on pannel 2).
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This results in fewer pore conetions for rocks dominated
by larger pores and hence conduction of electric cur-
rent is retarded. For samples dominated by many small
pores the low of electrical charge is facilitated by the
dense pore network.
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Use Electrical Resistivity to eliminate unconnected
stiff Pore Space Geometries

Samples with low frame flexibility
(fast rocks with Simple & Large Pores)

Most low frame flexibility samples
have high permeability, but exceptions
(e.g. oomoldic rocks) exist
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Electrical resistivity measurements
and resulting cementation factors
can be used to destinguish those
rocks with low frame flexibility
factor and connected pore network
from those with unconnected pore
network.
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