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Abstract

The Atlantic Mid Ocean Ridge can be traced from the Bouvet triple junction at latitude 54 degrees south, some 10,000 kilometers northwards
via Iceland into the Norwegian Sea before joining with the Gakkel Ridge in the Arctic Ocean, via the Fram Strait.

Along the length of the divergent boundary of the Atlantic Mid-Ocean Ridge, the spreading center is offset by regularly spaced transform
boundaries. These can be traced shoreward as deep-seated continental fracture zones beneath the sediment cover.

Lister et al. (1986) described upper plate and lower plate passive margins, separated by a detachment fault, which give rise to asymmetric
conjugate margins after final continental breakup. The upper plate is characterized by a narrow continental shelf, with relatively little
sedimentary accommodation space. It is relatively unstructured and has experienced uplift related to underplating. While on the opposite side
of the mid ocean ridge, the conjugate lower plate is characterized by a wide continental shelf, which has abundant sedimentary
accommaodation space. It is complexly structured and exhibits bowed up detachment faults. Transfer faults offset marginal features and can
cause the upper/lower plate polarity to change along the strike of the margin.

The Fram Strait is a transform margin which was initiated in the Eocene as a result of the onset of spreading in the North Atlantic. The sliding
of the North American Plate past the Eurasian Plate during the opening of the North Atlantic created an upthrust zone that formed due to
space constraints associated with low-angle convergent strike slip or transform motion. The easiest direction for space relief for the squeezed
sediments is vertical, and a zone of downward tapering wedges and upthrust margins is created.

The Atlantic Mid Ocean Ridge transform boundaries can be traced across the oceanic crust towards the coast line, forming basement
structural highs. These are related to volcanic activity along strike of these “leaky” fracture zones in the oceanic crust. These structures set up
the initial structural framework of the continental margin basins. Syn-rift and post-rift deepwater sedimentation onlap these basement highs
and the influence of the transfer zones continues to propagate into younger strata by differential compaction. These differential compaction
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faults both act as a hydrocarbon migration pathway from deep-seated source rocks to shallower reservoirs, as well as influencing deepwater
sediment delivery systems.

These zones of long-lived crustal weakness can be subsequently reactivated during later tectonic episodes, giving rise to inversion structures
and complex compressive and transpressive/transtensional features. In offshore Equatorial Guinea, reactivation of the Ascension Fracture
Zone during Senonian times created a series of transpressional anticlines, one of which contains the Ceiba Field.

Using the South Atlantic as an analogue, the integration of gravity, magnetic, and seismic data has been used to construct a simple
symmetrical spreading model for the opening of the Norwegian Sea between Iceland and the island of Jan Mayen.
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Presentation Outline

Norwegian — Greenland Sea Asymmetric Conjugate Margins:
Upper Plate, Lower Plate,
Svalbard Upthrust Zone.

South Atlantic:
Non-Rigid Plates (Intra-Plate Deformations),
Fracture Zones,
Ceiba Field.

North Atlantic and Norwegian — Greenland Sea FZ Offshore/Onshore linkage:
Onshore outcrop examples:
UK and South East Greenland,
Seismic examples:
Jan Mayen Fracture Zones, Mid-Norway and North East Greenland.

Key message:

Mid-Ocean Ridge Fracture Zones Offshore/Onshore linked shear zones control:
Coarse clastic sediment entry points,
Provide hydrocarbon migration routes,
Create trapping geometries,
&
Allow development of new models for exploration.
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North Atlantic Asymmetric Conjugate Margins (1991)
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Convergent Strike Slip or Transform Motion Upthrust Zone
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* Two plates moving at low
convergent angle causes space
problem.

 Easiest direction for relief is
upwards.

* Upthrusts are not necessarily
symmetrical.

* Faults coalesce and
anastomose with depth.

Modified after Lowell, J.D.,1972 Spitzbergen Tertiary Orogenic Belt and Fracture Zone.

Geol. Soc. Am. Bull., pp. 3091-3102
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Fracture Zones of the South Atlantic
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Equatorial Guinea Ceiba Field, Senonian inversion structure related to
reactivation of Ascension Fracture Zone
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North Atlantic & Norwegian -
Greenland Sea Fracture Zones:
Onshore — Offshore Linkage

8 - Germania Land Deformation Zone
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Fracture Zone — West Jan Mayen Fracture Zone

4 - Wyville Thomson/Ymir
Ridge Thrust Complex
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Bathymetric data clearly illustrate the
presence of additional Fracture Zones,
(not illustrated for sake of clarity).
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"B o UK Offshore/Onshore Linkage:
- X Lewisian Gneiss Complex

» Accreted as series of terranes in the
Precambrian
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- NW-SE faults produce the longest lineaments
- Originate in Archean (2490-2400 Ma): Steep
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———
- Reactivated during most subsequent tectonic
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Pless, J. et al, 2010. Characterising fault networks in the Lewisian Gneiss Complex, NW Scotland: CO“OCOPhI"IpS

Implications for petroleum potential in the Clair Field basement, Faroe-Shetland Basin. AAPG, New
Orleans — oral & poster presentation
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North Atlantic & Norwegian - Greenland Sea Deformation History
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SE Greenland Offshore/Onshore Linkage: Sedalen Area

Simplified Geological Map
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Guarnieri, P., 2011, Analysis of Palaeogene strike-slip tectonics along the southern East Greenland
margin (Sedalen area). Bull. Geol. Soc. Den., 23, pp. 65-68. Reproduced with permission of GEUS



SE Greenland Offshore/Onshore Linkage: Kialineq, Sendre Aputitéq & Patulajivit area
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UK Offshore/Onshore Linkage: Wyville Thomson/Ymir Ridge Thrust Complex
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» Two plates moving at low convergent angle causes space problem
(plate reorientation due to opening of Fram Strait?)

* Easiest direction for relief is upwards.

* Wrench fault flower structures are not necessarily symmetrical.
* Faults coalesce and anastomose with depth.

- .
Figure 8, Ritchie, J. D. et al., 2008, The effects of Cenozoic compression within the Faroe-Shetland Basin. From: Johnson, H., Doré, A.G., COHOCOPhI"IpS
Gatcliff, R.W., Holdsworth, R., Lundin, E.R. & Ritchie, J.D. (eds) The Nature and Origin of Compression in Passive Margins. Geological

Society, London, Special Publications, 306, 121 — 136. Reproduced with permission of the Geological Society of London.



Central and East Jan Mayen Fracture Zones

Gaina et al., 2009:
”mild inversion”,
”several compressive events

Central Jan Mayen
Fracture Zone

Inversion of oceanic crust
due to reactivation of
Fracture Zone

East Jan Mayen
Fracture Zone

Inversion of pelagic
sediments due to
reactivation of Fracture Zone
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Gaina, C. et al, 2009, Palaeocene—Recent plate boundaries in the NE Atlantic
and the formation of the Jan Mayen microcontinent. J. Geol. Soc., 601-616.
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Flower Structure — Naglfar Dome, Vagring Basin
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» Two plates moving at low convergent angle causes space problem Yis
(plate reorientation due to opening of Fram Strait?)
* Easiest direction for relief is upwards. ;
* Wrench fault flower structures are not necessarily symmetrical.
* Faults coalesce and anastomose with depth.
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Norwegian - Greenland Sea: Asymmetric Conjugate Margins (2009)

(Ocean Bottom Refraction Seismic Data)
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Norwegian - Greenland Sea: Asymmetric Conjugate Margins
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CONCLUSIONS

A simple symmetric spreading model can be L;sed to
explain the opening of the Norwegian — Greenland Sea.
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.| associated with reactivation of the Mid-Ocean Ridge

NW-SE trending, coast-perpendicular ffacture zones are
recognized regionally in the deepwater and adjacent
?helf, probably linked to onshore Precambrian basement
abric.

e L e e
Transtensional, transpressional and inversion structuring

transform boundaries/fracture zones is obvious
throughout the North Atlantic and Norwegian — Greenland
Sea (as seen to the south of the Equator) .

¥ FZ Offshore/Onshore Iinkd shear zones control:
¥ Sediment entry points,
¥ Provide hydrocarbon migration routes,
¥ Create trapping geometries,
&
v Allow development of new exploration models.
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