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Abstract

Current classifications of carbonate platforms use depositional gradient to separate systems into two end member types, ramps and
flat-topped platforms. Facies and sequence stratigraphic predictions vary significantly between these two end-members. However,
many examples exist that do not conform to this simple classification. We have used a series of 2D numerical forward model runs to
investigate how sediment production, transport and other controls such as tectonic subsidence, antecedent topography, and relative
sea-level oscillation interact to determine platform geometry.

Modelling results suggest that rates of offshore sediment transport relative to rates of autochthonous production are a critical factor in
maintaining a ramp profile in stable cratonic settings under a constant rate of relative sea-level rise. Type of carbonate production
profile, for example euphotic versus oligophotic, is not a significant control in our model cases. Both euphotic and oligophotic
production profiles produce FTPs when sediment transport rates are low relative to production rates, and ramps when sediment
transport rates are relatively high. These results suggest a continuum of platform types, ranging from transport-dominated, low-
gradient systems, to in-situ accumulation dominated systems. A system may be transported dominated because of high-energy
processes able to break down and transport even bound sediment, or because carbonate factories produce only sediment easily
transportable even under low energy conditions. Breaks of slope in underlying topography and differential fault subsidence are a
stronger control on platform geometry in in-situ accumulation dominated systems. Relative sea-level oscillations tend to move the
locus of sediment production laterally along any slope present on the platform, distributing sediment accumulation across the whole
width of the platform, suppressing progradation and steepening, and so favouring development of low-gradient systems.
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Based on all these results, we suggest that simple cut-off classification into ramp and flat-topped platform types can be useful, but a
more meaningful approach is to describe and predict platform strata in terms of a multiple dimension platform parameter space
containing a continuum of geometries controlled by sediment production, sediment transport, antecedent topography, differential
subsidence effects, relative sea-level oscillations and perhaps other as yet unappreciated controls.
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The Problem
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e Predictions usually require some knowledge of
location on the platform and the likely
distribution of facies from known tie points
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e Relatively easy to do on a steep-margined flat-
top platform because platform margin is often
clear and can be used as a tie point for
predictive models

w' o Still issues though e.g. fine grained versus
coarse grained platform interiors, platform
margin reservoir quality etc

«» Knowledge of location on the platform is more
difficult in ramp systems

e Tram-line reflection geometries gives little or
no clue about location on the ramp

e Also, the fundamental controls on ramp
formation are obscure

Scale1lkm

2d line west of the Isle Of Wight, UK, showing Mesozoic strata e Need improved predictive models to deal with
including Portland Group and Purbeck Group ramp carbonates tram-line ramp pIatforms
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Platform Types & Classifications

What are the fundamental controls that determine basic

platform type?
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Stratigraphic Forward Modelling

 Try to recreate the various attached platform
geometries in a stratigraphic forward model and
systematically vary the controlling parameters to
understand what geometries result

» Use Dionisos which combines in-situ carbonate . -._-d\___
growth with diffusional sediment transport
% Isolated —
platform —_t
.... - ., Rimmed shelf
Non-rimmed shelf —
Distally steepened ‘.g
Homoclinal




Stratigraphic Forward Modelling Assumptions

* Rate of sediment transport is proportional —
to topographic gradient
L Steep gradient leads to high rates of transport
* Rate of sediment transport varies with "
sediment type

0 Coarse grains transported at lower rates than _
fine grains t

0 Cohesive sediment transported at lower rates

than non-cohesive sediment T

)
 Rate of sediment production varies as a T

non-linear function of water depth

O Note that production rate is different from

accumulation rate
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Stratigraphic Forward Modelling Parameters

Y IR .

M1 Input Parameters

+ Bathymetry at 5 Ma

« 1000 Km long 2D grid with 10 Km grid cells

# 250 m initial relief
« 0.03" slope passing into 125 m flat
bottomed basin
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Carbonate Platform Geometry: Ramps = Transport

Relatively High Transport Rate

Max Gradient = 0.04°
Max Grad Diff = 0.11

Relatively Low Transport Rate

Max Gradient = 7.64°
Max Grad Diff = 134.11

Williams et al., 2011, JSR



Carbonate Platform Geometry : Ramps = Transport

Production rate (mMy)

Increasing transport rate
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Carbonate Platform Geometry : Ramps = Transport

B -

Modelled continuum
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Geometry I: The low angle homoclinal ramp is comparable with the
Trucial Coast ramp (image modified from Purser, 1973).

Geometry Il: Low angle ramp geometry akin to the Arundian aged
South Wales ramp (image modified from Simpson, 1987).

Geometry lll: An intermediate geometry (flat-topped ramp) akin to the
Kimmeridgian aged ramp of the Iberian basin (image modified from
Aurell et al., 1998).

Geometry IV: FTP geometry comparable with the Great Bahama Bank
(image modified from Schlager, 2005).



The Transport Sink: the Pen Y Holt Fm.
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Carbonate Platform Geometry :
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The Factory: The High Tor Limestone
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High energy storm eve nts redistribute shallow water
derived sediment into the distal sections of the ramp,
depositing the moteral as o serdes of event beds

Inshore-derived muds are deposited
out of suspension during the lower
energy postevent phase

/

Location af high sediment producing
shallow water corbonate factory
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Carbonate Platform Geometry : Factory matters little
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Carbonate Platform Geometry : Factory matters little

Carbonate Production Rate
(mky)
* No transport = flat top platform

Production » Platform top at 20m water depth
cut-off at 20m

20

_ Sealevel

I

* High transport = ramp

Water depth (m)
a1
o

100 e No accumulation in less than 20m water

depth

NB If the factory makes sediment that is \

more prone to transport, then it can be an
important control on overall platform type

Sealevel




Carbonate Platform Geometry : Tectonic Controls
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I Inner and mid-ramp

Outer ramp and other
carbonate platforms

ﬂ?_% Geometry (Vexwmo | e e Rotational subsidence, where rates of
subsidence increase laterally, occurs in
tectonic settings like foreland basins
* Simple models suggest that this has a
significant impact on platform
geometry and stacking patterns (e.g.
Dorobek, 1995; Allen et al., 2001) but
S—— systematic analysis is required to
properly understand what this impact

\ will be...




Carbonate Platform Geometry : Tectonic Controls

(& ] | Depositional protiles M1 [[B. ] [ Denosimional profiles MG
O My
4 AN * Rotational subsidence acts to suppress progradation
© - 0 and steepening by increasing gradients, hence
h . increasing the rate of sediment transport, and leading
® - @ to formation of ramp-like geometries
_| * On the left, standard reference model, on the right, the

o o same models but with the addition of rotiational

o subsidence with a maximum of 100mMy! at the distal
— N | end of the profile

o * At relatively high rates of rotational subsidence

= — — = (Geometry lll and IV) a low-angle ramp with

retrogradational stacking is produced

: _—1 « The low angle ramp geometries are a consequence of
°© < |°D increased topographic gradients leading to higher rates
—=| of sediment transport.




Greenhouse

100ky period

4m amplitude

Icehouse

400ky period

70m amplitude
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Icehouse

100ky period

70m amplitude

 Eustatic oscillations are a key control on incidence of flat-top steep-margined platform
versus ramp geometries

* Most basically, greenhouse flat-top platforms versus icehouse ramps



Carbonate Platform Geometry : Eustatic Controls

Amplitude (m)
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As eustatic oscillation amplitude increases (>50
m) all of the geometries produced are very low
angle ramp systems, regardless of the rate of
sediment transport.

Flat-top steep-margin platforms are more likely
during greenhouse climatic conditions

Low angle ramp systems are more likely during
icehouse

However, eustatic oscillations are clearly not
the only control on platform geometry




Carbonate Platform Geometry : MultiEIe Controls
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Carbonate Platform Geometry : A Process Continuum
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Preliminary conclusion:

Carbonate platforms should not be
classified into discrete classes e.g.
ramps, flat-top platforms

Better approach is to consider a

process continuum, and a continuum

of form, multiple controls and a multi

dimensional parameter space

This raises the question of how to

predict facies distributions

Map the parameter space with

realistic process-based SFMs

CSDMS model development...



Carbonate Platform Geometry : Next Steps

e Use the next generation of stratigraphic
forward models e.g. CSDMS models that
include more realistic biology and detailed
representations of sediment transport
processes to map facies distributions in the

model parameter space

* Tie this modelling back to outcrop and
subsurface examples by trying to classify
the outcrop and subsurface examples
according to this parameter space and
make testable away from data point facies

predictions




Summary

Basic platform geometry e.g. flat top steep-margin platform versus ramp, is a

consequence of multiple controls leading to a continuum of form
Sediment transport is a key control

High frequency eustatic oscillations and rotational tectonic subsidence are also

key controls, along with other factors not discussed here e.g. basin bathymetry

Platform type is best treated as a continuum rather than applying arbitrary

classification cutoffs

Transport
Rate

The best predictions of facies distribution will
likely come from methods based on multiple

controls modelled as a multiple parameter

space

RSL

Amplitude Production

Rate





